Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

M.Phil./Ph.D./URS-EE-2019

SET-Y

10017

SUBJECT: Electrical Engineering

		Sr. No
Time: 11/4 Hours	Max. Marks : 100	Total Questions: 100
Roll No. (in figures)	(in words)	
Name	Father's Name	
Mother's Name	Date of Examination	
(Signature of the Candidate)		(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the University website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
- There will be no negative marking. Each correct answer will be awarded one full mark.
 Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated
 as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

- 1. A fair coin is tossed three times in succession. If the first toss produces a head, then the probability of getting exactly two heads in three tosses is:
 - (1) 1/8
- (2) 1/2
- (3) 3/8
- (4) 3/4
- 2. Let the probability density function of a random variable X be given as $fx(x) = \frac{3}{2}e^{-3x}u(x) + ae^{4x}u(-x)$ where u(x) is the unit step function. Then the value of a and $Prob\{X \le 0\}$, respectively are:
 - (1) 2, 1/2
- (2) 4, 1/2
- (3) 2, 1/4
- (4) 4, 1/4
- 3. Let $A = \begin{bmatrix} -3 & 2 \\ -1 & 0 \end{bmatrix}$, and I is the identity matrix, then A⁹ is given by :
- (1) 511A + 510I (2) 309A + 104I (3) 154A + 155I

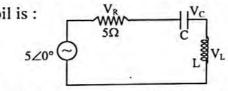
- 4. The equations $\begin{bmatrix} 2 & -2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ has
 - (1) no solution

- (2) only one solution $x_1 = 0$, $x_2 = 0$
- (3) non zero unique solution
- (4) multiple solutions
- The Laplace transform of the function $f(t) = e^{2t} \sin(5t) u(t)$ is:
 - (1) $\frac{5}{s^2 4s + 29}$ (2) $\frac{5}{s^2 + 5}$ (3) $\frac{s 2}{s^2 + 4s + 29}$ (4) $\frac{5}{s + 5}$

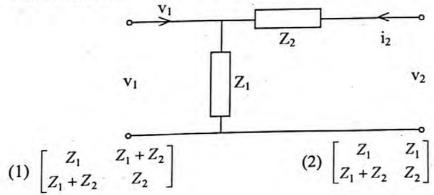
- Consider a signed defined as $x(t) = \begin{cases} e^{j10t} & |t| \le 1 \\ 0 & |t| > 1 \end{cases}$.

Its Fourier transform is given as:

(1) $\frac{2\sin(w-10)}{w-10}$

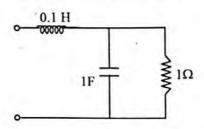

(2) $2e^{j10} \frac{\sin(w-10)}{w-10}$

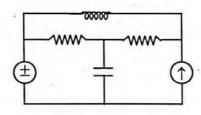
(3) $\frac{2\sin(w-10)}{w-10}$


(4) $e^{j10w} \frac{\sin(w-10)}{w-10}$

MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(A)

- 7. In a two port reciprocal network, the output open circuit voltage by the input current is equal to:
 - (1) h_{12}
- (2) Z_{12}
- $(3) Y_{11}$
- (4) B
- 8. A series RLC circuit consists of L = 0.5 H, C = 50μ F and R = 40Ω . When excited with 220V AC rms and 50Hz frequency source, the voltage across the capacitor is :
 - (1) 140V
- (2) 139.6V
- (3) 138.02V
- (4) 142V
- **9.** The Y-parameter of the following network is $\begin{bmatrix} 0 & -1/2 \\ 1/2 & 1 \end{bmatrix}$, then the network is:
 - (1) non-reciprocal and active
- (2) non-reciprocal and passive
- (3) reciprocal and active
- (4) reciprocal and passive
- 10. In the circuit shown below, the magnitudes of V_L and V_C are twice that of V_R . The inductance of the coil is: $V_R \longrightarrow V_C$


- (1) 2.14mH
- (2) 5.30mH
- (3) 31.8mH
- (4) 1.32mH
- 11. For a two port network shown below, the Z-matrix is given by :


 $(3) \begin{bmatrix} Z_1 & Z_2 \\ Z_2 & Z_1 + Z_2 \end{bmatrix}$

 $(4) \begin{bmatrix} Z_1 & Z_1 \\ Z_1 & Z_2 + Z_2 \end{bmatrix}$

- 12. The Z-matrix of a network is given as $Z = \begin{bmatrix} 0.9 & 0.2 \\ 0.2 & 0.6 \end{bmatrix}$, then Y_{22} is given by :
 - (1) 1.2
- (2) 0.4
- (3) -0.4
- (4) 1.8
- 13. The resonant frequency for the given circuit below is:

- (1) 1 rad/s
- (2) 3 rad/s
- (3) 2 rad/sec
- (4) 5.1 rad/sec
- 14. The number of chords in the graph of the circuit shown below is:

- (1) 3
- (2) 4
- (3) 5
- (4) 6
- 15. The average power absorbed by an impedance of $Z = 30 j70\Omega$ when a voltage of $V = 120 \angle 0^{\circ}$ is applied across it is:
 - (1) 21.4W
- (2) 37.24W
- (3) 32.74W
- (4) 12.4W
- **16.** The Q-factor of a coil with resonating frequency f_0 is given by :
 - $(1) \ \frac{2\pi f_0 R}{L}$

(2) $\frac{2\pi f_0 R}{C}$

(3) $\frac{bandwidth}{f_0}$

(4) None of these

MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(A)

17. Which of the following statements holds for the divergence of electric and magnetic flux densities?

- (1) Both are zero
- (2) These are zero for static densities but non-zero for time varying densities.
- (3) It is zero for the electric flux density
- (4) It is zero for the magnetic flux density

18. The value of flux density at a point in space is $\vec{B} = 4x\hat{a}_x + 2ky\hat{a}_y + 8\hat{a}_z$ W/m². The value of constant k must be equal to:

- (1) -2
- (2) -0.5
- (3) +0.5
- (4) +2

19. Two electric charges +q and -2Q are placed at (0, 0) and (6, 0) in the x-y plane. The equation of the zero equipotential curve in the x-y plane is:

(1) x = -2

(2) y = 2

(3) $x^2 + y^2 = 2$

(4) $(x+2)^2 + y^2 = 16$

20. A 4-pole lap wound DC shunt generator has an armature winding consisting of 220 turns each of 0.004Ω resistance, then the armature resistance will be:

(1) 0.055Ω

(2) 0.0275Ω

(3) 0.110Ω

(4) 0.22Ω

21. Full load voltage regulation of a power transformer is zero when the power factor of the load is:

(1) unity and leading

(2) zero and leading

(3) zero and lagging

(4) unity and lagging

22.	In an	autotransformer	of	voltage	ratio	V_1/V_2	and	V_1	>	V_2	the	fraction	of	power
	transfe	erred inductively	is:										ï	

- (1) $\frac{V_1}{V_1 + V_2}$
- (2) $\frac{V_2}{V_1}$
- (3) $\frac{V_1 V_2}{V_1 + V_2}$ (4) $\frac{V_1 V_2}{V_1}$
- A series motor drawing an armature current of 1a is operating under saturated magnetic conditions. The torque developed in the motor is proportional to:
 - (1) $\frac{I}{I}$
- (2) $\frac{I}{I^2}$
- (3) I_a^2
- (4) I_a

Which of the following are the features of a shaded pole motor

- Salient pole stator
- Uniform air-gap
- Two stator windings one of which is a short circuited ring
- Squirrel cage rotor

Select the correct answer using following

Code:

- (1) a and d

- (2) b and d (3) a, c and d (4) a, b and d
- A synchronous motor is running from an infinite bus of voltage V_t in steady state at about 50% of its rated load with a power angle δ_1 between V_t and E_f . The load is suddenly decreased to 25%. E_f attains its new steady state power angle δ_2 with V_t by initially:
 - (1) falling behind and making a complete rotation
 - (2) advancing and making a complete rotation
 - (3) falling behind followed by oscillation about δ_2
 - (4) advancing followed by oscillation about δ_2

26.	The rotor output of a three phase induction motor is 15kW and the corresponding slip is							
	4%. The rotor cop							
	(1) 600W	(2) 625W	(3) 650W	(4) 700W				
27.	A single phase tra	insformer has a ra	ting of 15kVA, 600	/120V. It is reconnec	ted as an			
				source. The maximum				
	can supply is:							
	(1) 90kVA		(2) 18 kVA					
	(3) 15 kVA		(4) 12kVA					
28.	A 200V DC shunt	motor delivers an	output of 17kW wit	h an input of 20kW	The field			
	A 200V DC shunt motor delivers an output of 17kW with an input of 20kW. The field winding resistance is 50Ω and armature resistance is 0.04Ω . Maximum efficiency will							
	be obtained when the total armature copper losses are equal to:							
	(1) 2632W		(2) 3000W					
	(3) 3680W		(4) 5232W					
29.	A three phase alte	rnator is connecte	d to a delta-delta tra	ansformer. The hyster				
	eddy current loass	es of the transform	ner are 300W and 40	00W respectively. If the	esis and			
	of the alternator is	reduced by 10%	then the hysteresis a	and eddy current losse	e speed			
	transformer respec	tively will be:		and dudy current losse	s of the			
	(1) 218W and 262	.44W	(2) 243W and 3	24W .	5			
	(3) 243W and 360	W	(4) 270W and 4		-			
30.	A 220V DC shunt	motor is operating	at a speed of 1440rp	om. The armature resid	tom '			
	A 220V DC shunt motor is operating at a speed of 1440rpm. The armature resistance is 1.0Ω and armature current is 10A. If the excitation of the machine is reduced by 10%,							
	the extra resistance	e to be put in the	armature circuit to	maintain the same sp	by 10%,			
	torque will be:	4		the same sp	eed and			
	(1) 1.79Ω	(2) 2.1Ω	(3) 3Ω	(4) 18.9Ω	2			
IPH/I	PHD/URS-EE-2019)/(Electrical Engg	.)(SET-Y)/(A)					

31.	For a motor to applied is:	deliver a torque o	f 2.5Nm at 1400rp	om, the armature voltage to be				
	(1) 125.5V		(2) 193.3V	de O				
-	(3) 200V	3	(4) 241.7V					
32.	The direct axis ar	nd quadrature axis	reactances of a sali	ent pole alternator are 1.2pu and				
	1.0pu, respectively. The armature resistance is negligible. If this alternator is delivering							
	rated kVA at unit	ty power factor and	at rated voltage, th	en its power angle is:				
	(1) 30°	(2) 45°	(3) 60°	(4) 90°				
33.	The locked rotor	current in a three	phase start connec	eted 15kW, 4-pole, 230V, 50Hz				
	induction motor	at rated condition	is 50A. Neglecting	losses and magnetising current,				
				ne motor is connected to a 236V,				
	57Hz supply is:							
	(1) 58.5A	(2) 45.0A	(3) 42.7A	(4) 55.6A				
34.	The slip of an induction motor normally does not depend upon							
	(1) rotor speed		(2) synchrono	ous speed				
	(3) shaft torque		(4) core loss	component				
35.	A synchronous g	generator is feeding	a zero power facto	or (lagging) load at rated current.				
	The armature rea	ection is:						
	(1) magnetising		(2) demagnet	ising				
	(3) cross-magne	tising	(4) ineffectiv	e				
36.	A single phase tr	ransmission line of	j0.8Ω is supplying	a load of 40A at 200V and unity				
			l power factor will b					
	(1) 1	(2) 0.987	(3) 0	(4) 0.982				
ИРН	PHD/URS-EE-20	019/(Electrical Eng	gg.)(SET-Y)/(A)	Р. Т. С				

37.				qual to 100MVA and 150MV step down transformer having	
	10% reactance i	s connected to the		nult level on LV side of the	
	transformer will	be:			
	(1) 12.57	(2) 9.57	(3) 11.57	(4) 18.57	
38.	When a bundled parameters are :	conductor is used	in place of a single	conductor, the changes in lir	16
	(1) L increases a	nd C decreases	(2) L decreases	and C increases	
	(3) L decreases a	nd C not affected		C are not affected	
39.	shortened at one	nission line with co end and termined in tred at the mid sect	n its characteristic im	ce of 300Ω and length $\lambda/2$ in pedance at the othe. The input	s
	(1) 0Ω	(2) 200Ω	(3) 300Ω	(4) 150Ω	
40.	In load flow analy	sis, the load conne	ected to a bus is repres	ented as:	
	(1) constant curre				
	(2) constant impe	dance connected a	t the bus		
	(3) voltage and fr	equency dependen	t source at the bus		
	(4) constant real a	nd reactive power	drawn from the bus	ů.	
	A 200 km long thaving line losses resistance of:	hree phase transn of 5MW. If the	nission line is transf recieving end volta	erring a power of 200MVAge is 110kV, the line has	a
	(1) 10Ω/ph		(2) $1.5\Omega/ph$		
	(3) 1Ω/ph		(4) $2.5\Omega/ph$		

42.	The cost function of a 50MW g	generator is $F(P_1) = 225 + 53P_1 + .02P_1^2$ where P_1 is the
	generator loading in MW. For 1	00% loading the cost is:
	(1) Rs. 55 per Mwh	(2) Rs. 55 per Mw
	(3) Rs. 58.5 per Mwh	(4) Rs. 55.5 per Mwh

- 43. Two insulator discs of identifical capacitance value C make up of a string for a 22kV, 50 Hz single phase overhead line insulation system. If the pin to earth capacitance is also C, then the string efficiency is:
 - (1) 50% (2) 75% (3) 90% (4) 86%
- 44. The surge impedance of a three phase 400kV transmissionline is 400Ω . Then the surge impedance loading is :
 - (1) 400MW (2) 1000MW (3) 1600MW (4) 800MW
- 45. A three phase generator rated at 110MVA, 11kV is connected through circuit beakers to a transformer. The generator has direct axis sub-transient reactance $X''_d = 19\%$, transient reactance $X'_d = 26\%$ and synchronous reactance 130%. The generator is operating at no load and rated voltage when a three phase short circuit fault occurs between the breakers and the transformer. The magnitude of initial symmetrical RMS current in the breakers will be:
 - (1) 4.44kA (2) 22.20kA (3) 30.39kA (4) 38.45kA
- 46. The bus admittance matrix of a three-bus three line system is:

$$Y = j \begin{bmatrix} -13 & 10 & 5 \\ 10 & -18 & 10 \\ 5 & 10 & -13 \end{bmatrix}$$

if each transmission line between the two buses is represented by an equivalent π -network, the magnitude of the shunt susceptance of the line connecting bus 1 and 2 is:

(1) 4 (2) 2 (3) 1 (4) 0

MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(A)

- 47. The angle δ in the swing equation of a synchronous generator is the :
 - (1) angle between stator voltage and currents
 - (2) angular displacement of the rotor with respect to the stator
 - (3) angular displacement of the stator mmf with respect to a synchronously rotating axis
 - (4) angular displacement of an axis fixed to the rotor with respect to a synchronous rotating axis
- 48. A single phase load is supplied by a single phase voltage source. If the current flowing from the load to the source is $10\angle 150^{\circ}$ A and if the voltage at the load terminals is $100\angle 60^{\circ}V$, then the:
 - (1) load absorbs real power and delivers reactive power
 - (2) load absorbs real power and absorbs reactive power
 - (3) load delivers real power and delivers reactive power
 - (4) load delivers real power and absorbs reactive power
- 49. A cylindrical rotor generator delivers 0.5pu power in the steady state to an infinite bus through a transmission line of reactance 0.5pu. The generator no load voltage is 1.5pu and the infinite bus voltage is 1pu. The inertia constant of the generator is 5MW-s/MVA and the generator reactance is 1pu. The critical clearing angle in degrees for a three phase dead short circuit fault at the generator terminal is:
 - (1) 53.5
- (2) 60.2
- (3) 70.8
- (4) 79.6
- 50. In a biased differential relay, the bias is defined as a ratio of:
 - (1) number of turns of restraining and operating coil
 - (2) operating coil current and restraining coil current
 - (3) fault current and operating coil currents
 - (4) fault current and restraining coil current

A

11

51. An electric motor developing a starting torque of 15Nm starts with a load torque of 7Nm on its shaft. If the acceleration at start is 2 rad/s², then moment of inertia of the systems must be (neglecting viscous and Coulomb friction)

(1) 0.25kgm²

(2) 0.25Nm²

(3) 4 kgm²

(4) 4Nm²

52. The ABCD parameters of a three phase overhead transmission line are $A = D = 0.9 \angle 0^{\circ}$, $B = 200 \angle 90^{\circ}\Omega$ and $C = 0.95 \times 10^{-3} \angle 90^{\circ}$. At no load condition, a shunt inductive reactor is connected at the receiving end of the line to limit the receiving end voltage to be equal to the sending end voltage. The ohmic value of the reactor is:

(1) $\infty \Omega$

(2) 2000Ω

(3) 105.26Ω

(4) 1052.5Ω

53. A round rotor generator with internal voltage $E_1 = 2.0pu$ and X = 1.1pu is connected to a round rotor synchronous motor with internal voltage $E_2 = 1.3pu$ and X = 1.2pu. The reactance of the line connecting the generator to the motor is 0.5pu. When the generator supplies 0.5pu power, the rotor angle difference between the machines will be:

(1) 57.42°

(2) 1°

(3) 32.58°

(4) 122.58°

54. If we make the system insensitive to forward path gain G(s) using negative feedback configuration, it becomes:

- (1) slow and stable
- (2) more sensitive to feedback path gain variations
- (3) stable as well as insensitive to variation in feedback path gains
- (4) fast at the cost of stability

	55.	. Which of the following cannot be a	chieved using open	loop control systems:				
		(1) tracking avarying control comm	nand					
		(2) rejecting some known disturban	ices	2				
		(3) regulation around a set point						
		(4) sensitivity reduction with respec	et to forward path g	ain				
				1				
56.	An integral controller K (s) = $\frac{1}{s}$ is	An integral controller K (s) = $\frac{1}{s}$ is required to be placed in tandem with plant G(s) so						
		as to make the steady state error for	ramp input as zero.	Then the type of plant G(s) is:				
		(1) 2 (2) 1	(3) 0	(4) ∞				
	57.	A system with $G(s) \frac{1}{s(s+1)}$ is stablized	zed with a proportion	onal controller K in the forward				
		path. The value of K for which the sy	ystem will admit su	stained oscillations will be:				
		(1) 1	(2) 2					
		(3) $2\sqrt{2}$	(4) no value es	xists				
	58.	An open loop transfer function has a then if the closed loop system is stable	one pole and one z	ero in the right half of s-plane, should encircle - 1 + i0 point				
		(1) once in the anticlockwise direction		jo pome				
		(2) once in the clockwise direction						
		(3) should not encircle		è				
		(4) none of these						
	59.	The Asymptotes in the root loc $G(s) = \frac{1}{s(s+1)(s+2)}$ intersects with the	cus plot of unity	feedback configuration of				
		(1) -1.25 (2) -1.5	(3) -1	(4) -1.15				
N	IPH/P	PHD/URS-EE-2019/(Electrical Engg.	.)(SET-Y)/(A)					

- 60. Bode gain plots alone can be used to find the transfer function of a linear time invariant system when:
 - (1) Not possible alone with bode gain plots
 - (2) system is stable and observable
 - (3) system is causal and controllable
 - (4) system is non-minimum phase
- 61. The transfer function of a phase lead compensator is $\frac{s+a}{s+b}$ and that of phase lag compensator is $\frac{s+p}{s+q}$, then which of the following sets of conditions must be met?
 - (1) a > b and p < q

(2) a > b and p > q

(3) a < b and p < q

- (4) a < b and p > q
- **62.** The dynamics of a system are governed by $\ddot{y}(t) \ddot{x}(t) x(t-1) = 0$. Then the transfer function of the system is:
 - (1) $s^2 + se^{-s}$

(2) $1 + s^2 e^{-s}$

(3) $1 + s^{-2}e^{-s}$

- (4) $1 + s^{-2}e^{s}$
- **63.** A composite RC network has the transfer function $K(s) = \frac{1+21s+20s^2}{1+11s+10s^2}$, then this block can be used as a:
 - (1) phase lead compensator
- (2) phase lag compensator
- (3) lag-lead compensator
- (4) none of above
- 64. The value of K and a, for which the system $G(s) = \frac{K(s+2)}{s^3 + s^2 + as + 1}$ will oscillate with 3 rad/sec frequency in unity feedback configuration, are respectively as:
 - (1) 2, 2
- (2) 4, 5
- (3) 3, 4
- (4) 2, 3

- 65. The time taken by the output of a system $G(s) = \frac{1}{(s+1)}$ to settle around 95% of its final value is:
 - (1) 2 sec
- (2) 1.33 sec
- (3) 1.11 sec
- (4) 3 secondary
- 66. The system with $G(s) = \frac{1}{s(\tau s + 1)}$ when connected in the unity feedback configuration produces error to the step inputs as $e(t) = Ke^{-4t} \sin(10t + \phi)$. The system time constant τ is then given by:
 - (1) 0.01
- (2) 0.03
- (3) 10
- (4) 4
- 67. Given a unity feedback system with $G(s) = \frac{K(s-1)(s-2)}{s(s+1)}$, which of the following is true?
 - (1) the system will always be stable for all K
 - (2) the system will be stable for low gain K
 - (3) the system is stable for high gain K
 - (4) the system root locus never crosses jw axis
- 68. The state space equations of a system are as:

$$\ddot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u; \ y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

then the damping ratio and decay factor are:

- (1) .707, 2
- (2) 1.414, 1
- (3) 0.5, 1
- (4) 0.5, 0.5

69. The state space equations of a system are as:

$$\ddot{x} = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u; \ y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

then the position error constant K_p and velocity error constant K_v are respectively as:

- (1) 2, 0
- $(2) \infty, 0$
- (3) ∞,
- (4) None of these

70. The dynamics of a system are governed by following state equations:

$$\ddot{x} = \begin{bmatrix} 3 & 0 \\ -2 & 2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u; \ y = \begin{bmatrix} 1 & 1 \end{bmatrix} x$$

then this system is:

- (1) controllable, observable and unstable
- (2) not controllable, observable and stable
- (3) not controllable, not observable and unstable
- (4) not controllable, observable and unstable
- 71. A moving coil instrument gives a full scale deflection of 10mA when voltage across its terminal is 100mV. For a 100A current, calculate the shunt resistance required for a full scale deflection:
 - (1) 0.01Ω
- (2) 0.001Ω
- (3) 0.1Ω
- $(4) 1\Omega$
- 72. Time response of an indicating instrument is given by:
 - (1) controlling mechanism
- (2) bearing mechanism
- (3) deflecting mechanism
- (4) damping mechanism
- 73. A shunt resistance of 25Ω is necessary to extend range of an ammeter from $100\mu A$ to $500\mu A$. The value of internal resistance of the ammeter is :
 - (1) 25 Ω
- $(2) \cdot 50\Omega$
- (3) 100Ω
- (4) 1000Ω
- 74. In a PMMC type instrument, the magnetic field produced by the eddy currents:
 - (1) doesn't affect the motion of the coil
 - (2) acts in the same direction of the motion of the coil
 - (3) acts in the direction opposite to the motion of the coil
 - (4) none of above

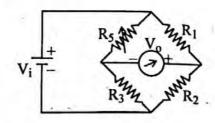
MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(A)

75.	In a two wattmeter method of measuring three phase power, p	ower factor is 0.5, one
14	wattmeter reads W then the other meter will read:	4

- (1) $\sqrt{3}$ W
- (2) W/2
- (4) 0W

76. The ratio of the potential transformer and current transformer required to measure power in circuit rated 5500kW, 11kV with a wattmeter rated at 5A and 110V respectively are:

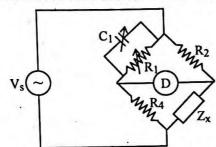
- (1) 10, 10
- (2) 50, 50
- (3) 200, 200
- (4) None of these


The effect of stray magnetic fields on the actuating torque of a portable instrument is maximum when the operating field of the instrument and the stray field are :

- (1) perpendicular
- (2) parallel
- (3) inclined at 60° (4) inclined at 30°

A 500A/5A, 50Hz transformer has a bar primary. The secondary burden is a pure resistance of 1Ω and it draws a current of 5A. If the magnetic core requires 250AT for magnetisation, the percentage ratio error is:

- (1) 10.56
- (2) -10.55
- (3) 11.80
- (4) -11.80


A strain guage forms one arm of the bridge shown in the figure below, and has a nominal resistance without any load as $R_s = 300\Omega$. Other bridge resistances are $R_1 = R_2 = R_3 = 300\Omega$. The maximum permissible current through the strain guage is 20mA. During certain measurement when the bridge is excited by maximum permissible voltage an the strain guage resistance is increased by 1% over the nominal value, the output voltage Vo in mV is:

- (1) 56.02
- (2) 40.83
- (3) 29.85

(4) 10.02

- 80. In CE configuration, the input V-I characteristics are drawn by taking:
 - (1) V_{CE} as I_C for constant value of I_E
 - (2) V_{BE} vs I_E for constant value of V_{CE}
 - (3) V_{BE} vs I_B for constant value of I_C
 - (4) V_{BE} vs I_B for constant value of V_{CE}
 - 81. The bridge circuit shown in figure below is used for the measurement of an unknown element Z_x . The bridge circuit is best suited when Z_x is as:

- (1) low resistance (2) high resistance (3) low Q inductor (4) lossy capacitor
- 82. A silicon diode indicates forward currents of 2mA and 10mA when diode voltages are 0.6V and 0.7V respectively. The operating temperature of the diode junction is:
 - (1) 180K
- (2) 360K
- (3) 480K
- (4) 320K
- 83. The current gain of a bipolar transistor drops at high frequencies because of:
 - (1) transistor internal capacitances
- (2) high current effects in the base
- (3) parasitic inductive elements
- (4) the Early effects
- 84. A diode has a leakage current of $10\mu A$ at certain temperature. Find its value when temperature is increased by $25^{\circ}C$:
 - (1) 56.00 µA
- (2) 56.56 µA
- (3) 59.56 µA
- (4) None of these

- **85.** A transistor has $\alpha = 0.98$, then its β is :
 - (1) 50
- (2) 49
- (3) 70
- (4) None of these

MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(A)

86	A JFET has a va	tlue of $g_{m0} = 4000 \mu$	S. Determine the val	lue of g_m at $V_{GS} = -3V$. Given			
	that $V_{GS(off)} = -8 V$			* * * * * * * * * * * * * * * * * * *			
	(1) 250 μS	(2) 2500 μS	(3) 25 μS	(4) None of these			
87.	A multiplexer is	a :					
	(1) one input ma	ny output device	(2) one input an	d one output device			
	(3) many input r	nany output device	(4) many input t	o one output device			
88.	A J-K flip flop is	made to toggle via:					
	(1) J=0, K=0	(2) $J=1, K=0$	(3) $J=0, K=1$	(4) $J=1, K=1$			
89.	Multiplexers are	used in :					
	(1) data generati	on	(2) serial to para	illel conversion			
	(3) data selection	1.	(4) None of thes	e			
90.	Which one of the following is a universal gate?						
	(1) AND	(2) OR	(3) Ex-NOR	(4) NAND			
91.	Invalid state of an S-R flip flop occurs when:						
	(1) S=1, R=0	(2) S=0, R=1	(3) S=0, R=0	(4) S=1, R=1			
92.	A feature that dis	tinguishes the J-K flig	p flop from the S-R	flip flop is the:			
	(1) toggle conditi	on	(2) preset input				
	(3) type of clock	pulse	(4) clear input				
93.	In DC Choppers,	the duty cycle D is us	sually varied at fixed	d frequency in order to:			
	(1) limit operating	g frequency					
	(2) have lower im	pact on filter design	and switching losse	s			
	(3) reduce operati	ng frequency		1+1			
	(4) have proper ve	oltage at output					
MPH/I	PHD/URS-EE-201	9/(Electrical Engg.)	(SET-Y)/(A)	(4)			

- (1) one resistor across the string
- (2) resistors of different value across each SCR
- (3) resistors of the same value across each SCR
- (4) one resistor in series with the string
- 95. A single phase full wave half controlled bridge converter feeds an inductive load. The two SCRs in the converter are connected to a common DC bus. The converter has to have a freewheeling diode:
 - (1) because the converter inherently does not provide way for freewheeling
 - (2) because the converter does not provide free wheeling for high values of triggering angles
 - (3) because the freewheeling action of the converter will cause shorting of AC supply
 - (4) because if a gate pulse to one of the SCRs is missed, it will subsequently cause a high load current in the other SCR
- 96. A voltage source inverter is used to control the speed of a three phase 50 Hz squirrel cage induction motor. Its slip for rated torque is 4%. The flux is maintained at rated value. If the stator resistance and rotational losses are neglected, then the frquency of the impressed voltage to obtain twice the rated torque at starting should be:
 - (1) 10 Hz
- (2) 5 Hz
- (3) 4 Hz
- (4) 2 Hz
- An SCR is considered to be a semi-controlled device because :
 - (1) it can be turned OFF but not ON with a gate pulse
 - (2) it conducts only during one half-cycle of an alternating current wave

 - (3) it can be turned ON but not OFF with a gate pulse (4) it can be turned ON only during one half cycle of an alternating voltage wave
- MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(A)

- Circuit turn-OFF time of an SCR is defined as the time:
 - (1) taken by the SCR to turn OFF
 - (2) required for the SCR current to become zero
 - (3) for which the SCR is reverse biased by the commutation circuit
 - (4) for which the SCR is reverse biased to reduce its current below the holding current
- A half controlled single phase bridge rectifier is supplying an RL load. It is operated at a firing angle α and the load current is continuous. The fraction of cycle that the freewheeling diode conducts is:
 - (1) $\frac{1}{2}$
- $(2) \left(1 \frac{\alpha}{\pi}\right) \qquad (3) \frac{\alpha}{2\pi}$
- $(4) \frac{\alpha}{\pi}$
- 100. The typical ratio of the latching current to holding current in a 20A thyristor is:
 - (1) 5.0
- (2) 2.0
- (3) 1.0
- (4) 0.5

Total No. of Printed Pages: 21

SET-Y

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

В

M.Phil./Ph.D./URS-EE-2019

SUBJECT: Electrical Engineering

(Signature of the Candidate)		(Signature of the Invigilator)
	-	4 L 1 4 4 7
Mother's Name	Date of Examination_	
Name	Father's Name	· · · · · · · · · · · · · · · · · · ·
Roll No. (in figures)	(in words)	
Time: 11/4 Hours	Max. Marks: 100	Total Questions: 10
		Sr. No. 1001

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the University website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

	All the second s						
1.	A 200 km long three phase trans	smission line is transfer	ring a power of	200MVA			
	having line losses of 5MW. If the	ne recieving end voltag	e is 110kV, the 1	ine has a			
	resistance of:						
	(1) 10Ω/ph	(2) 1.5Ω/ph					
	(3) 1Ω/ph	(4) 2.5Ω/ph	Y				
2.	The cost function of a 50MW gene generator loading in MW. For 1009		$P_1 + .02P_1^2$ where	P_1 is the			
	(1) Rs. 55 per Mwh	(2) Rs. 55 per Mw					
	(3) Rs. 58.5 per Mwh	(4) Rs. 55.5 per M					
3.	Two insulator discs of identifical c	anacitance value C make	un of a string for	· 22kV			
-	50 Hz single phase overhead line						
	also C, then the string efficiency is						
	(1) 50% (2) 75%	(3) 90%	(4) 86%				
4.	The surge impedance of a three pha	ase 400kV transmissionlin	ne is 400Ω. Then t	he surge			
	impedance loading is:						
	(1) 400MW	(2) 1000MW					
	(3) 1600MW	(4) 800MW					
5.	to a transformer. The generator h	as direct axis sub-transi	ent reactance X" _d	= 19%,			
	transient reactance $X'_d = 26\%$ and synchronous reactance 130%. The generator is						
	operating at no load and rated voltage when a three phase short circuit fault occurs between the breakers and the transformer. The magnitude of initial symmetrical RMS						
	current in the breakers will be:	former. The magnitude o	f initial symmetric	al RMS			
	(1) 4.44kA	(2) 22.20kA		*			
	(3) 30.39kA	(4) 38.45kA					

6. The bus admittance matrix of a three-bus three line system is:

$$Y = \begin{bmatrix} -13 & 10 & 5 \\ 10 & -18 & 10 \\ 5 & 10 & -13 \end{bmatrix}$$

if each transmission line between the two buses is represented by an equivalent π -network, the magnitude of the shunt susceptance of the line connecting bus 1 and 2 is :

- (1) 4
- (2) 2
- (3) 1

The angle δ in the swing equation of a synchronous generator is the :

- (1) angle between stator voltage and currents
- (2) angular displacement of the rotor with respect to the stator
- (3) angular displacement of the stator mmf with respect to a synchronously rotating axis
- (4) angular displacement of an axis fixed to the rotor with respect to a synchronous rotating axis

8. A single phase load is supplied by a single phase voltage source. If the current flowing from the load to the source is $10\angle - 150^{\circ}$ A and if the voltage at the load terminals is $100\angle 60^{\circ}V$, then the:

- (1) load absorbs real power and delivers reactive power
- (2) load absorbs real power and absorbs reactive power
- (3) load delivers real power and delivers reactive power
- (4) load delivers real power and absorbs reactive power

9. A cylindrical rotor generator delivers 0.5pu power in the steady state to an infinite bus through a transmission line of reactance 0.5pu. The generator no load voltage is 1.5pu and the infinite bus voltage is 1pu. The inertia constant of the generator is 5MW-s/MVA and the generator reactance is 1pu. The critical clearing angle in degrees for a three phase dead short circuit fault at the generator terminal is:

(1) 53.5

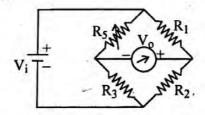
(2) 60.2

 $(3) \cdot 70.8$

(4) 79.6

	(2) operating coil current and restraining coil current
	(3) fault current and operating coil currents
	(4) fault current and restraining coil current
11.	A moving coil instrument gives a full scale deflection of 10mA when voltage across its terminal is 100mV. For a 100A current, calculate the shunt resistance required for a full scale deflection: (1) 0.01Ω (2) 0.001Ω (3) 0.1Ω (4) 1Ω
12.	Time response of an indicating instrument is given by:
	(1) controlling mechanism (2) bearing mechanism
	(3) deflecting mechanism (4) damping mechanism
13.	A shunt resistance of 25Ω is necessary to extend range of an ammeter from $100\mu A$ to $500\mu A$. The value of internal resistance of the ammeter is :
	(1) 25Ω (2) 50Ω (3) 100Ω (4) 1000Ω
14.	In a PMMC type instrument, the magnetic field produced by the eddy currents:
	(1) doesn't affect the motion of the coil
	(2) acts in the same direction of the motion of the coil
	(3) acts in the direction opposite to the motion of the coil
	(4) none of above
15.	In a two wattmeter method of measuring three phase power, power factor is 0.5, one wattmeter reads W then the other meter will read:
	(1) $\sqrt{3}$ W (2) W/2 (3) 2W (4) 0W
. 2.	/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(B) P. T. O
IPH/	/PHD/URS-EE-2019/(Electrical English)

10. In a biased differential relay, the bias is defined as a ratio of:


(1) number of turns of restraining and operating coil

- 16. The ratio of the potential transformer and current transformer required to measure power in circuit rated 5500kW, 11kV with a wattmeter rated at 5A and 110V respectively are:
 - (1) 10, 10
- (2) 50, 50
- (3) 200, 200
- (4) None of these
- 17. The effect of stray magnetic fields on the actuating torque of a portable instrument is maximum when the operating field of the instrument and the stray field are:
 - (1) perpendicular

(2) parallel

(3) inclined at 60°

- (4) inclined at 30°
- 18. A 500A/5A, 50Hz transformer has a bar primary. The secondary burden is a pure resistance of 1Ω and it draws a current of 5A. If the magnetic core requires 250AT for magnetisation, the percentage ratio error is:
 - (1) 10.56
- (2) -10.55
- (3) 11.80
- (4) -11.80
- 19. A strain guage forms one arm of the bridge shown in the figure below, and has a nominal resistance without any load as $R_s = 300\Omega$. Other bridge resistances are $R_1 = R_2 = R_3 = 300\Omega$. The maximum permissible current through the strain guage is 20mA. During certain measurement when the bridge is excited by maximum permissible voltage an the strain guage resistance is increased by 1% over the nominal value, the output voltage V_0 in mV is:

- (1) 56.02
- (2) 40.83
- (3) 29.85
- (4) 10.02

20.	In CE configuration, the input V-I characteristics are drawn by taking:					
	(1) V _{CE} as I _C for constant value o	fI_{E}	v.			
	(2) V _{BE} vs I _E for constant value o	f V _{CE}				
	(3) V _{BE} vs I _B for constant value of I _C					
	(4) V_{BE} vs I_{B} for constant value of	f V _{CE}				
21.	Invalid state of an S-R flip flop occurs when:					
	(1) S=1, R=0	(2) S=0, R=1				
	(3) S=0, R=0	(4) S=1, R=1				
22.	A feature that distinguishes the J-K flip flop from the S-R flip flop is the:					
	(1) toggle condition	(2) preset input				
	(3) type of clock pulse	(4) clear input				
23.	In DC Choppers, the duty cycle D is usually varied at fixed frequency in order to:					
	(1) limit operating frequency					
	(2) have lower impact on filter design and switching losses					
	(3) reduce operating frequency					
	(4) have proper voltage at output	+	Y			
24.	In order to obtain static voltage equalization in series-connected SCRs, connections are					
	made of:					
	(1) one resistor across the string					
	(2) resistors of different value across each SCR					
	(3) resistors of the same value ac	ross each SCR				
	(4) one resistor in series with the	string	ė.			
TDIY/	DUD/IDS FF 2010//Floatrical F	VEET V//D)	ртс			

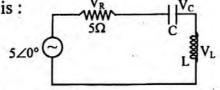
- 25. A single phase full wave half controlled bridge converter feeds an inductive load. The two SCRs in the converter are connected to a common DC bus. The converter has to have a freewheeling diode:
 - (1) because the converter inherently does not provide way for freewheeling
 - (2) because the converter does not provide free wheeling for high values of triggering angles
 - (3) because the freewheeling action of the converter will cause shorting of AC supply
 - (4) because if a gate pulse to one of the SCRs is missed, it will subsequently cause a high load current in the other SCR
 - 26. A voltage source inverter is used to control the speed of a three phase 50 Hz squirrel cage induction motor. Its slip for rated torque is 4%. The flux is maintained at rated value. If the stator resistance and rotational losses are neglected, then the frquency of the impressed voltage to obtain twice the rated torque at starting should be:
 - (1) 10 Hz
- (2) 5 Hz
- (3) 4 Hz
- (4) 2 Hz
- 27. An SCR is considered to be a semi-controlled device because :
 - (1) it can be turned OFF but not ON with a gate pulse
 - (2) it conducts only during one half-cycle of an alternating current wave
 - (3) it can be turned ON but not OFF with a gate pulse
 - (4) it can be turned ON only during one half cycle of an alternating voltage wave
- 28. Circuit turn-OFF time of an SCR is defined as the time:
 - (1) taken by the SCR to turn OFF
 - (2) required for the SCR current to become zero
 - (3) for which the SCR is reverse biased by the commutation circuit
 - (4) for which the SCR is reverse biased to reduce its current below the holding current

- 29. A half controlled single phase bridge rectifier is supplying an RL load. It is operated at a firing angle a and the load current is continuous. The fraction of cycle that the freewheeling diode conducts is:
 - $(1) \frac{1}{2}$
- $(2) \left(1 \frac{\alpha}{\pi}\right) \qquad (3) \frac{\alpha}{2\pi}$
- $(4)\frac{\alpha}{2}$
- The typical ratio of the latching current to holding current in a 20A thyristor is:
 - (1) 5.0
- (2) 2.0
- (3) 1.0
- (4) 0.5
- A fair coin is tossed three times in succession. If the first toss produces a head, then the probability of getting exactly two heads in three tosses is:
 - (1) 1/8
- (2) 1/2
- (3) 3/8
- $(4) \ 3/4$
- 32. Let the probability density function of a random variable X be given as $fx(x) = \frac{3}{2}e^{-3x}u(x) + ae^{4x}u(-x)$ where u(x) is the unit step function. Then the value of a and $Prob\{X \le 0\}$, respectively are:
 - (1) 2, 1/2
- (2) 4, 1/2
- (3) 2, 1/4
- (4) 4, 1/4
- 33. Let $A = \begin{bmatrix} -3 & 2 \\ -1 & 0 \end{bmatrix}$, and I is the identity matrix, then A⁹ is given by:
 - (1) 511A + 510I
- (2) 309A + 104I (3) 154A + 155I

- **34.** The equations $\begin{bmatrix} 2 & -2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ has
 - (1) no solution
 - (2) only one solution $x_1 = 0$, $x_2 = 0$
 - (3) non zero unique solution
 - (4) multiple solutions

- The Laplace transform of the function $f(t) = e^{2t} \sin(5t) u(t)$ is:
- (1) $\frac{5}{s^2 4s + 29}$ (2) $\frac{5}{s^2 + 5}$ (3) $\frac{s 2}{s^2 + 4s + 29}$ (4) $\frac{5}{s + 5}$
- **36.** Consider a signed defined as $x(t) = \begin{cases} e^{j10t} & |t| \le 1 \\ 0 & |t| > 1 \end{cases}$.

Its Fourier transform is given as:


(1) $\frac{2\sin(w-10)}{w-10}$

(3) $\frac{2\sin(w-10)}{w-10}$

- 37. In a two port reciprocal network, the output open circuit voltage by the input current is equal to:
 - $(1) h_{12}$
- $(2) Z_{12}$
- $(3) Y_{11}$
- (4) B
- 38. A series RLC circuit consists of L = 0.5 H, C = 50μ F and R = 40Ω . When excited with 220V AC rms and 50Hz frequency source, the voltage across the capacitor is:
 - (1) 140V
- (2) 139.6V
- (3) 138.02V
- (4) 142V
- The Y-parameter of the following network is $\begin{bmatrix} 0 & -1/2 \\ 1/2 & 1 \end{bmatrix}$, then the network is: 39.
 - (1) non-reciprocal and active
- (2) non-reciprocal and passive

(3) reciprocal and active

- (4) reciprocal and passive
- In the circuit shown below, the magnitudes of V_L and V_C are twice that of V_R. The inductance of the coil is:

- (1) 2.14mH
- (2) 5.30mH
- (3) 31.8mH
- (4) 1.32mH

41. An electric motor developing a starting torque of 15Nm starts with a load torque of 7Nm on its shaft. If the acceleration at start is 2 rad/s², then moment of inertia of the systems must be (neglecting viscous and Coulomb friction)

 $(1) 0.25 \text{kgm}^2$

 $(2) 0.25 \text{Nm}^2$

(3) 4 kgm²

(4) 4Nm²

42. The ABCD parameters of a three phase overhead transmission line are $A = D = 0.9 \angle 0^{\circ}$, $B = 200 \angle 90^{\circ}\Omega$ and $C = 0.95 \times 10^{-3} \angle 90^{\circ}$. At no load condition, a shunt inductive reactor is connected at the receiving end of the line to limit the receiving end voltage to be equal to the sending end voltage. The ohmic value of the reactor is:

(1) $\infty \Omega$

(2) 2000Ω

(3) 105.26Ω

(4) 1052.5Ω

43. A round rotor generator with internal voltage $E_1 = 2.0pu$ and X = 1.1pu is connected to a round rotor synchronous motor with internal voltage $E_2 = 1.3pu$ and X = 1.2pu. The reactance of the line connecting the generator to the motor is 0.5pu. When the generator supplies 0.5pu power, the rotor angle difference between the machines will be:

(1) 57.42°

(2) 1°

(3) 32.58°

(4) 122.58°

44. If we make the system insensitive to forward path gain G(s) using negative feedback configuration, it becomes:

- (1) slow and stable
- (2) more sensitive to feedback path gain variations
- (3) stable as well as insensitive to variation in feedback path gains
- (4) fast at the cost of stability

45.	Which of the following cannot be achieved using open loop control systems:						
	(1) tracking avarying control command						
	(2) rejecting some known disturbances						
	(3) regulation around a set point						
	(4) sensitivity reduction with respect to forward path gain						
46.	An integral controller K (s) = $\frac{1}{s}$ is requ	aired to be p	olaced in tan	dem with pla	nt G(s) so		
	as to make the steady state error for ramp input as zero. Then the type of plant G(s) is:						
	(1) 2 (2) 1	(3) 0	(4)) ∞	4.4		
47.	A system with $G(s) = \frac{1}{s(s+1)}$ is stablized with a proportional controller K in the forward						
	path. The value of K for which the system will admit sustained oscillations will be:						
	(1) 1	(2) 2		•			
	(3) $2\sqrt{2}$	(4) no val	ue exists				
48.	An open loop transfer function has one pole and one zero in the right half of s-plane,						
	then if the closed loop system is stable, the nyquist plot should encircle - $1 + j0$ point						
	(1) once in the anticlockwise direction				11		
	(2) once in the clockwise direction	0					
	(3) should not encircle						
	(4) none of these) i				
49.	The Asymptotes in the root locus plot of unity feedback configuration of						
	$G(s) = \frac{1}{s(s+1)(s+2)}$ intersects with the real axis at:						
	(1) -1.25 (2) -1.5	(3) -1	(4)) -1.15			
		(3) -1) -	-1.15		

- 50. Bode gain plots alone can be used to find the transfer function of a linear time invariant system when:
 - (1) Not possible alone with bode gain plots
 - (2) system is stable and observable
 - (3) system is causal and controllable
 - (4) system is non-minimum phase
- 51. The transfer function of a phase lead compensator is $\frac{s+a}{s+b}$ and that of phase lag compensator is $\frac{s+p}{s+q}$, then which of the following sets of conditions must be met?
 - (1) a > b and p < q

(2) a > b and p > q

(3) a < b and p < q

- (4) a < b and p > q
- 52. The dynamics of a system are governed by $\ddot{y}(t) \ddot{x}(t) x(t-1) = 0$. Then the transfer function of the system is:
 - (1) $s^2 + se^{-s}$

(2) $1 + s^2 e^{-s}$

(3) $1 + s^{-2}e^{-s}$

- (4) $1 + s^{-2}e^{s}$
- 53. A composite RC network has the transfer function $K(s) = \frac{1+21s+20s^2}{1+11s+10s^2}$, then this block can be used as a:
 - (1) phase lead compensator
- (2) phase lag compensator
- (3) lag-lead compensator
- (4) none of above
- 54. The value of K and a, for which the system $G(s) = \frac{K(s+2)}{s^3 + s^2 + as + 1}$ will oscillate with

3 rad/sec frequency in unity feedback configuration, are respectively as:

- (1) 2, 2
- (2) 4, 5
- (3) 3, 4
- (4) 2, 3

- The time taken by the output of a system $G(s) = \frac{1}{(s+1)}$ to settle around 95% of its final value is:
 - (1) 2 sec
- (2) 1.33 sec
- (3) 1.11 sec
- (4) 3 secondary
- The system with $G(s) = \frac{1}{s(\tau s + 1)}$ when connected in the unity feedback configuration produces error to the step inputs as $e(t) = Ke^{-4t} \sin(10t + \phi)$. The system time constant τ is then given by:
 - (1) 0.01
- (2) 0.03
- (4) 4
- Given a unity feedback system with $G(s) = \frac{K(s-1)(s-2)}{s(s+1)}$, which of the following is 57. true?
 - (1) the system will always be stable for all K
 - (2) the system will be stable for low gain K
 - (3) the system is stable for high gain K
 - (4) the system root locus never crosses jw axis
- The state space equations of a system are as: 58.

$$\ddot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u; \ y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

then the damping ratio and decay factor are:

- (1) .707, 2
- (2) 1.414, 1 (3) 0.5, 1
- (4) 0.5, 0.5

The state space equations of a system are as: 59.

$$\ddot{x} = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u; \ y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

then the position error constant K_p and velocity error constant K_v are respectively as:

- (1) 2, 0
- $(2) \infty, 0$
- $(3) \infty, 1$
- (4) None of these

The dynamics of a system are governed by following state equations:

$$\ddot{x} = \begin{bmatrix} 3 & 0 \\ -2 & 2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u; \ y = \begin{bmatrix} 1 & 1 \end{bmatrix} x$$

then this system is:

- (1) controllable, observable and unstable
- (2) not controllable, observable and stable
- (3) not controllable, not observable and unstable
- (4) not controllable, observable and unstable
- 61. Full load voltage regulation of a power transformer is zero when the power factor of the load is:
 - (1) unity and leading
- (2) zero and leading
- (3) zero and lagging

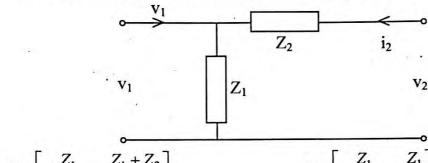
- (4) unity and lagging
- In an autotransformer of voltage ratio V_1/V_2 and $V_1 > V_2$, the fraction of power 62. transferred inductively is:
 - (1) $\frac{V_1}{V_1 + V_2}$ (2) $\frac{V_2}{V_1}$ (3) $\frac{V_1 V_2}{V_1 + V_2}$ (4) $\frac{V_1 V_2}{V_1}$

- A series motor drawing an armature current of 1a is operating under saturated magnetic 63. conditions. The torque developed in the motor is proportional to:
 - (1) $\frac{I}{I}$ (2) $\frac{I}{I^2}$
- (3) I_a^2
- $(4) I_a$
- Which of the following are the features of a shaded pole motor
 - Salient pole stator
 - Uniform air-gap
 - Two stator windings one of which is a short circuited ring
 - Squirrel cage rotor

Select the correct answer using following

Code:

- (1) a and d
- (2) b and d
- (3) a, c and d
- (4) a, b and d

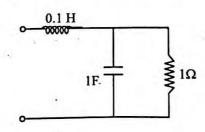

MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(B)

- 65. A synchronous motor is running from an infinite bus of voltage V_t in steady state at about 50% of its rated load with a power angle δ_1 between V_t and E_f . The load is suddenly decreased to 25%. E_f attains its new steady state power angle δ_2 with V_t by initially:
 - (1) falling behind and making a complete rotation
 - (2) advancing and making a complete rotation
 - (3) falling behind followed by oscillation about δ_2
 - (4) advancing followed by oscillation about δ_2
- 66. The rotor output of a three phase induction motor is 15kW and the corresponding slip is 4%. The rotor copper loss will be:
 - (1) 600W
- (2) 625W
- (3) 650W
- (4) 700W
- 67. A single phase transformer has a rating of 15kVA, 600/120V. It is reconnected as an autotransformer to supply 720V from a 600V primary source. The maximum load it can supply is:
 - (1) 90kVA
- (2) 18 kVA
- (3) 15 kVA
- (4) 12kVA
- 68. A 200V DC shunt motor delivers an output of 17kW with an input of 20kW. The field winding resistance is 50Ω and armature resistance is 0.04Ω . Maximum efficiency will be obtained when the total armature copper losses are equal to:
 - (1) 2632W
- (2) 3000W
- (3) 3680W
- (4) 5232W
- 69. A three phase alternator is connected to a delta-delta transformer. The hysteresis and eddy current loasses of the transformer are 300W and 400W respectively. If the speed of the alternator is reduced by 10% then the hysteresis and eddy current losses of the transformer respectively will be:
 - (1) 218W and 262.44W
- (2) 243W and 324W

(3) 243W and 360W

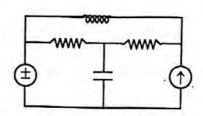
(4) 270W and 400W

- 70. A 220V DC shunt motor is operating at a speed of 1440rpm. The armature resistance is 1.0Ω and armature current is 10A. If the excitation of the machine is reduced by 10%, the extra resistance to be put in the armature circuit to maintain the same speed and torque will be:
 - (1) 1.79Ω
- $(2) 2.1\Omega$
- (3) 3Ω
- (4) 18.9Ω
- 71. For a two port network shown below, the Z-matrix is given by:


$$(1) \begin{bmatrix} Z_1 & Z_1 + Z_2 \\ Z_1 + Z_2 & Z_2 \end{bmatrix}$$

$$(2) \begin{bmatrix} Z_1 & Z_1 \\ Z_1 + Z_2 & Z_2 \end{bmatrix}$$

$$(3) \begin{bmatrix} Z_1 & Z_2 \\ Z_2 & Z_1 + Z_2 \end{bmatrix}$$


$$(4) \begin{bmatrix} Z_1 & Z_1 \\ Z_1 & Z_2 + Z_2 \end{bmatrix}$$

- 72. The Z-matrix of a network is given as $Z = \begin{bmatrix} 0.9 & 0.2 \\ 0.2 & 0.6 \end{bmatrix}$, then Y_{22} is given by :
 - (1) 1.2
- (2) 0.4
- (3) -0.4
- (4) 1.8
- 73. The resonant frequency for the given circuit below is:

- (1) · 1 rad/s
- (2) 3 rad/s
- (3) 2 rad/sec
- (4) 5.1 rad/sec

74. The number of chords in the graph of the circuit shown below is:

- (1) 3
- (2) 4
- (3) 5
- (4) 6

75. The average power absorbed by an impedance of $Z = 30 - j70\Omega$ when a voltage of $V = 120 \angle 0^{\circ}$ is applied across it is:

- (1) 21.4W
- (2) 37.24W
- (3) 32.74W
- (4) 12.4W

76. The Q-factor of a coil with resonating frequency f_0 is given by :

 $(1) \ \frac{2\pi f_0 R}{L}$

 $(2) \ \frac{2\pi f_0 R}{C}$

(3) $\frac{bandwidth}{f_0}$

(4) None of these

77. Which of the following statements holds for the divergence of electric and magnetic flux densities?

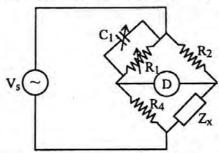
- (1) Both are zero
- (2) These are zero for static densities but non-zero for time varying densities.
- (3) It is zero for the electric flux density
- (4) It is zero for the magnetic flux density

78. The value of flux density at a point in space is $\vec{B} = 4x\hat{a}_x + 2ky\hat{a}_y + 8\hat{a}_z$ W/m². The value of constant k must be equal to:

- (1) -2
- (2) -0.5
- (3) +0.5
- (4) +2

- Two electric charges +q and -2Q are placed at (0, 0) and (6, 0) in the x-y plane. The equation of the zero equipotential curve in the x-y plane is:
 - (1) x = -2

(2) y = 2


(3) $x^2 + y^2 = 2$

- (4) $(x+2)^2 + y^2 = 16$
- A 4-pole lap wound DC shunt generator has an armature winding consisting of 220 turns each of 0.004Ω resistance, then the armature resistance will be :
 - (1) 0.055Ω

(2) 0.0275Ω

(3) 0.110Ω

- (4) 0.22Ω
- The bridge circuit shown in figure below is used for the measurement of an unknown element Z_x . The bridge circuit is best suited when Z_x is as:

- (1) low resistance (2) high resistance (3) low Q inductor (4) lossy capacitor
- 82. A silicon diode indicates forward currents of 2mA and 10mA when diode voltages are 0.6V and 0.7V respectively. The operating temperature of the diode junction is:
 - (1) 180K

(2) 360K

(3) 480K

- (4) 320K
- The current gain of a bipolar transistor drops at high frequencies because of: 83.
 - (1) transistor internal capacitances
- (2) high current effects in the base
- (3) parasitic inductive elements
- (4) the Early effects

MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(B)

84.		eakage current of 1 creased by 25°C:	0μA at certain tem	pearture. Find its value when
	(1) 56.00 μA	(2) 56.56 μA	(3) 59.56 μA	(4) None of these
85.	A transistor has o	$\alpha = 0.98$, then its β is	s:	A A A A A A A A A A A A A A A A A A A
	(1) 50	(2) 49	(3) 70	(4) None of these
86.	A JFET has a val that $V_{GS(off)} = -8V$		S. Determine the va	alue of g_m at $V_{GS} = -3V$. Given
	(1) 250 μS	2ىر 2500 (2)	(3) 25 μS	(4) None of these
87.	A multiplexer is a	:		
	(1) one input man	y output device	(2) one input ar	nd one output device
	(3) many input m	any output device	(4) many input	to one output device
88.	A J-K flip flop is i	made to toggle via:		
3.	(1) J=0, K=0	(2) J=1, K=0	(3) J=0, K=1	(4) J=1, K=1
89.	Multiplexers are us	sed in:	*	
	(1) data generation	n	(2) serial to para	allel conversion
	(3) data selection		(4) None of the	se
90.	Which one of the fe	ollowing is a univer	sal gate?	
	(1) AND	(2) OR	(3) Ex-NOR	(4) NAND
)1.]	For a motor to de applied is:	liver a torque of 2	2.5Nm at 1400rpm	, the armature voltage to be
	1) 125.5V		(2) 193.3V	
	3) 200V		(4) 241.7V	

	92.				nt pole alternator are 1.2pu and	
		1.0pu, respectiv	ely. The armature res	sistance is negligible	e. If this alternator is delivering	
		rated kVA at un	n its power angle is:			
		(1) 30°	(2) 45°	(3) 60°	(4) 90°	
	93.	The locked roto	or current in a three	phase start connect	ed 15kW, 4-pole, 230V, 50Hz	
					osses and magnetising current,	
					motor is connected to a 236V,	
		57Hz supply is:				
		(1) 58.5A	(2) 45.0A	(3) 42.7A	(4) 55.6A	
	94.	The slip of an ir	duction motor norma	ally does not depend	upon	
		(1) rotor speed	of the contract of	(2) synchronou	s speed	
		(3) shaft torque		(4) core loss co	omponent	
	95.	A synchronous generator is feeding a zero power factor (lagging) load at rated current.				
		The armature reaction is:				
		(1) magnetising		(2) demagnetis	ing	
	ē.	(3) cross-magne	etising	(4) ineffective		
	96.				load of 40A at 200V and unity	
		power factor. Th	en, the sending end p	power factor will be	:	
		(1) 1	(2) 0.987	(3) 0	(4) 0.982	
	97.	Two incoming li	nes with fault levels	at their terminals ec	ual to 100MVA and 150MVA	
		terminate on a c	common bus in a sul	ostation. A 1MVA	step down transformer having	
		10% reactance	is connected to this	bus. Then, the fa	ault level on LV side of the	
		transformer will	be:			
		(1) 12.57	(2) 9.57	(3) 11.57	(4) 18.57	
N	MPH/I	PHD/URS-EE-20	19/(Electrical Engg	.)(SET-Y)/(B)	P. T. O	
					4	

98.	When a bundled conductor is used in place of a single conductor, the changes in line
	parameters are :

- (1) L increases and C decreases
- (2) L decreases and C increases
- (3) L decreases and C not affected
- (4) both L and C are not affected
- 99. A lossless transmission line with characteristic impedance of 300Ω and length $\lambda/2$ is shortened at one end and termined in its characteristic impedance at the othe. The input impedance measured at the mid section of the line is:
 - (1) 0Ω
- (2) 200Ω
- (3) 300Ω
- (4) 150Ω
- 100. In load flow analysis, the load connected to a bus is represented as:
 - (1) constant current drawn from the bus
 - (2) constant impedance connected at the bus.
 - (3) voltage and frequency dependent source at the bus
 - (4) constant real and reactive power drawn from the bus

Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU

C

ARE ASKED TO DO SO) M.Phil./Ph.D./URS-EE-2019

SET-Y

10019

SUBJECT: Electrical Engineering

		O1. 140.
Time: 11/4 Hours	Max. Marks: 100	Total Questions: 100
Roll No. (in figures)	(in words)	
Name	Father's Name	
Mother's Name	Date of Examination_	
(Signature of the Candidate)		(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the University website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

- 1. Full load voltage regulation of a power transformer is zero when the power factor of the load is:
 - (1) unity and leading

(2) zero and leading

(3) zero and lagging

- (4) unity and lagging
- 2. In an autotransformer of voltage ratio V_1/V_2 and $V_1 > V_2$, the fraction of power transferred inductively is:
 - $(1) \ \frac{V_1}{V_1 + V_2}$

(2) $\frac{V_2}{V_1}$

 $(3) \ \frac{V_1 - V_2}{V_1 + V_2}$

- (4) $\frac{V_1 V_2}{V_1}$
- 3. A series motor drawing an armature current of 1_a is operating under saturated magnetic conditions. The torque developed in the motor is proportional to:
 - (1) $\frac{I}{I_a}$

 $(2) \frac{I}{I_a^2}$

(3) I_a^2

- (4) I_a
- 4. Which of the following are the features of a shaded pole motor
 - a. Salient pole stator
 - b. Uniform air-gap
 - c. Two stator windings one of which is a short circuited ring
 - d. Squirrel cage rotor

Select the correct answer using following

Code:

(1) a and d

(2) b and d

(3) a, c and d

(4) a, b and d

- 5. A synchronous motor is running from an infinite bus of voltage V_t in steady state at about 50% of its rated load with a power angle δ_1 between V_t and E_f . The load is suddenly decreased to 25%. E_f attains its new steady state power angle δ_2 with V_t by initially:
 - (1) falling behind and making a complete rotation
 - (2) advancing and making a complete rotation
 - (3) falling behind followed by oscillation about δ_2
 - (4) advancing followed by oscillation about δ_2
- 6. The rotor output of a three phase induction motor is 15kW and the corresponding slip is 4%. The rotor copper loss will be:
 - (1) 600W
- (2) 625W
- (3) 650W
- (4) 700W
- 7. A single phase transformer has a rating of 15kVA, 600/120V. It is reconnected as an autotransformer to supply 720V from a 600V primary source. The maximum load it can supply is:
 - (1) 90kVA
- (2) 18 kVA
- (3) 15 kVA
- (4) 12kVA
- 8. A 200V DC shunt motor delivers an output of 17kW with an input of 20kW. The field winding resistance is 50Ω and armature resistance is 0.04Ω . Maximum efficiency will be obtained when the total armature copper losses are equal to:
 - (1) 2632W
- (2) 3000W
- (3) 3680W
- (4) 5232W
- 9. A three phase alternator is connected to a delta-delta transformer. The hysteresis and eddy current loasses of the transformer are 300W and 400W respectively. If the speed of the alternator is reduced by 10% then the hysteresis and eddy current losses of the transformer respectively will be:
 - (1) 218W and 262.44W

(2) 243W and 324W

(3) 243W and 360W

(4) 270W and 400W

(1) 1.79Ω

C

(2) 2.1Ω

(3) 3Ω

(4) 18.9Ω

11. An electric motor developing a starting torque of 15Nm starts with a load torque of 7Nm on its shaft. If the acceleration at start is 2 rad/s², then moment of inertia of the systems must be (neglecting viscous and Coulomb friction)

 $(1) 0.25 \text{kgm}^2$

 $(2) 0.25 \text{Nm}^2$

(3) 4 kgm²

(4) 4Nm²

12. The ABCD parameters of a three phase overhead transmission line are $A = D = 0.9 \angle 0^{\circ}$, $B = 200 \angle 90^{\circ}\Omega$ and $C = 0.95 \times 10^{-3} \angle 90^{\circ}$. At no load condition, a shunt inductive reactor is connected at the receiving end of the line to limit the receiving end voltage to be equal to the sending end voltage. The ohmic value of the reactor is:

(1) $\infty \Omega$

(2) 2000Ω

(3) 105.26Ω

(4) 1052.5Ω

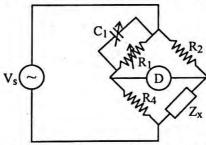
13. A round rotor generator with internal voltage $E_1 = 2.0pu$ and X = 1.1pu is connected to a round rotor synchronous motor with internal voltage $E_2 = 1.3pu$ and X = 1.2pu. The reactance of the line connecting the generator to the motor is 0.5pu. When the generator supplies 0.5pu power, the rotor angle difference between the machines will be:

(1) 57.42°

 $(2) 1^{\circ}$

(3) 32.58°

(4) 122.58°


MPH/PHD/URS-EÈ-2019/(Electrical Engg.)(SET-Y)/(C)

MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(C)

(3) should not encircle

(4) none of these

- 19. The Asymptotes in the root locus plot of unity feedback configuration of $G(s) = \frac{1}{s(s+1)(s+2)}$ intersects with the real axis at:
 - (1) -1.25
- (2) -1.5
- (3) -1
- (4) -1.15
- 20. Bode gain plots alone can be used to find the transfer function of a linear time invariant system when:
 - (1) Not possible alone with bode gain plots
 - (2) system is stable and observable
 - (3) system is causal and controllable
 - (4) system is non-minimum phase
- The bridge circuit shown in figure below is used for the measurement of an unknown element Z_x . The bridge circuit is best suited when Z_x is as:

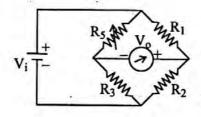
- (1) low resistance (2) high resistance (3) low Q inductor (4) lossy capacitor
- A silicon diode indicates forward currents of 2mA and 10mA when diode voltages are 22. 0.6V and 0.7V respectively. The operating temperature of the diode junction is:
 - (1) 180K
- (2) 360K
- (3) 480K
- (4) 320K
- The current gain of a bipolar transistor drops at high frequencies because of: 23.
 - (1) transistor internal capacitances
- (2) high current effects in the base
- (3) parasitic inductive elements
- (4) the Early effects

MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(C)

24.	A diode has a lea	kage current of 10	μA at certain tempe	arture. Find its value wher	
	temperature is incr		in and and		
	(1) 56.00 μA	(2) 56.56 μA	(3) 59.56 μA	(4) None of these	
25.	A transistor has α	= 0.98, then its β is		2	
	(1) 50 -	(2) 49	(3) 70 .	(4) None of these	
26.	A JFET has a valu	ne of $g_{m0} = 4000 \ \mu S$.	Determine the value	e of g_m at $V_{GS} = -3V$. Given	
	that $V_{GS(off)} = -8V$				
	(1) كىر 250	(2) 2500 μS	(3) 25 μS	(4) None of these	
27.	A multiplexer is a	:		100	
	(1) one input many output device (2) one input and one output device				
27	(3) many input ma	any output device	(4) many input to		
28.	A J-K flip flop is n	nade to toggle via :	4		
	(1) J=0, K=0	(2) J=1, K=0	(3) J=0, K=1	(4) J=1, K=1	
29.	Multiplexers are us	sed in :			
	(1) data generation	i	(2) serial to paralle	el conversion	
	(3) data selection		(4) None of these		
30.	Which one of the f	ollowing is a univers	al gate?	and the second	
	(1) AND	(2) OR	(3) Ex-NOR	(4) NAND	
31.				mA when voltage across its esistance required for a full	
	(1) 0.01Ω	(2) 0.001Ω	(3) 0.1Ω	(4) 1Ω	
			100		

Time response of an indicating instrument is given by:			
(1) controlling mechanism	(2) bearing mechanism		
(3) deflecting mechanism	(4) damping mechanism		
		0	
(1) 25Ω (2) 50Ω	(3) 100Ω (4) 1000Ω		
(2) acts in the same direction of	the motion of the coil		
(3) acts in the direction opposite	to the motion of the coil		
(4) none of above			
In a two wattmeter method of measuring three phase power, power factor is 0.5, one wattmeter reads W then the other meter will read:			
(1) $\sqrt{3}$ W (2) W/2	(3) 2W (4) 0W		
(3) 200, 200	(4) None of these		
		is	
(1) perpendicular	(2) parallel		
(3) inclined at 60°	(4) inclined at 30°	Ţ	
MID AIDS BE 2010//El-stricel	Enga)(SET-V)/(C)	c	
	 (1) controlling mechanism (3) deflecting mechanism A shunt resistance of 25Ω is need 500μA. The value of internal resistance of 25Ω is need 500μA. The value of internal resistance of 25Ω (2) 50Ω In a PMMC type instrument, the (1) doesn't affect the motion of the control of the control of the same direction of the control of th	(1) controlling mechanism (2) bearing mechanism (3) deflecting mechanism (4) damping mechanism A shunt resistance of 25Ω is necessary to extend range of an ammeter from 100μA to 500μA. The value of internal resistance of the ammeter is: (1) 25Ω (2) 50Ω (3) 100Ω (4) 1000Ω In a PMMC type instrument, the magnetic field produced by the eddy currents: (1) doesn't affect the motion of the coil (2) acts in the same direction of the motion of the coil (3) acts in the direction opposite to the motion of the coil (4) none of above In a two wattmeter method of measuring three phase power, power factor is 0.5, on wattmeter reads W then the other meter will read: (1) √3 W (2) W/2 (3) 2W (4) 0W The ratio of the potential transformer and current transformer required to measur power in circuit rated 5500kW, 11kV with a wattmeter rated at 5A and 110 respectively are: (1) 10, 10 (2) 50, 50 (3) 200, 200 (4) None of these The effect of stray magnetic fields on the actuating torque of a portable instrument maximum when the operating field of the instrument and the stray field are: (1) perpendicular (2) parallel	

38. A 500A/5A, 50Hz transformer has a bar primary. The secondary burden is a pure resistance of 1Ω and it draws a current of 5A. If the magnetic core requires 250AT for magnetisation, the percentage ratio error is:


(1) 10.56

(2) -10.55

(3) 11.80

(4) -11.80

39. A strain guage forms one arm of the bridge shown in the figure below, and has a nominal resistance without any load as $R_s = 300\Omega$. Other bridge resistances are $R_1 = R_2 = R_3 = 300\Omega$. The maximum permissible current through the strain guage is 20mA. During certain measurement when the bridge is excited by maximum permissible voltage an the strain guage resistance is increased by 1% over the nominal value, the output voltage V_o in mV is:

- (1) 56.02
- (2) 40.83
- (3) 29.85
- (4) 10.02

40. In CE configuration, the input V-I characteristics are drawn by taking :

- (1) V_{CE} as I_C for constant value of I_E
- (2) VBE vs IE for constant value of VCE
- (3) VBE vs IB for constant value of IC
- (4) VBE vs IB for constant value of VCE

41. A fair coin is tossed three times in succession. If the first toss produces a head, then the probability of getting exactly two heads in three tosses is:

- (1) 1/8
- (2) 1/2
- (3) 3/8
- (4) 3/4

- 42. Let the probability density function of a random variable X be given as $fx(x) = \frac{3}{2}e^{-3x}u(x) + ae^{4x}u(-x)$ where u(x) is the unit step function. Then the value of a and $Prob\{X \le 0\}$, respectively are:
 - (1) 2, 1/2

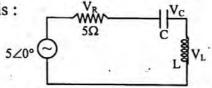
- (3) 2, 1/4 (4) 4, 1/4
- 43. Let $A = \begin{bmatrix} -3 & 2 \\ -1 & 0 \end{bmatrix}$, and I is the identity matrix, then A⁹ is given by :
- (1) 511A + 510I (2) 309A + 104I (3) 154A + 155I (4) e^{9A}

- **44.** The equations $\begin{bmatrix} 2 & -2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ has
 - (1) no solution

- (2) only one solution $x_1 = 0$, $x_2 = 0$
- (3) non zero unique solution
- (4) multiple solutions
- The Laplace transform of the function $f(t) = e^{2t} \sin(5t) u(t)$ is:
 - (1) $\frac{5}{s^2 4s + 29}$ (2) $\frac{5}{s^2 + 5}$ (3) $\frac{s 2}{s^2 + 4s + 29}$ (4) $\frac{5}{s + 5}$

- Consider a signed defined as $x(t) = \begin{cases} e^{j10t} & |t| \le 1 \\ 0 & |t| > 1 \end{cases}$.

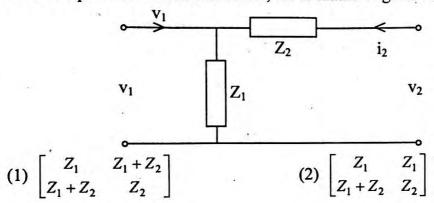
Its Fourier transform is given as:


 $(1) \frac{2\sin(w-10)}{w-10}$

(2) $2e^{j10} \frac{\sin(w-10)}{w-10}$

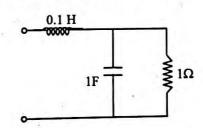
(3) $\frac{2\sin(w-10)}{w-10}$

- (4) $e^{j10w} \frac{\sin(w-10)}{w-10}$
- 47. In a two port reciprocal network, the output open circuit voltage by the input current is equal to:
 - (1) h_{12}
- (2) Z_{12}
- $(3) Y_{11}$
- (4) B


- 48. A series RLC circuit consists of L = 0.5 H, $C = 50\mu F$ and $R = 40\Omega$. When excited with 220V AC rms and 50Hz frequency source, the voltage across the capacitor is :
 - (1) 140V
- (2) 139.6V
- (3) 138.02V
- (4) 142V
- **49.** The Y-parameter of the following network is $\begin{bmatrix} 0 & -1/2 \\ 1/2 & 1 \end{bmatrix}$, then the network is :
 - (1) non-reciprocal and active
- (2) non-reciprocal and passive
- (3) reciprocal and active
- (4) reciprocal and passive
- 50. In the circuit shown below, the magnitudes of V_L and V_C are twice that of V_R . The inductance of the coil is: $V_R = V_C$

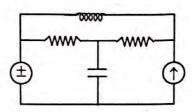
- (1) 2.14mH
- (2) 5.30mH
- (3) 31.8mH
- (4) 1.32mH
- 51. For a motor to deliver a torque of 2.5Nm at 1400rpm, the armature voltage to be applied is:
 - (1) 125.5V
- (2) 193.3V
- (3) 200V
- (4) 241.7V
- 52. The direct axis and quadrature axis reactances of a salient pole alternator are 1.2pu and 1.0pu, respectively. The armature resistance is negligible. If this alternator is delivering rated kVA at unity power factor and at rated voltage, then its power angle is:
 - (1) 30°
- (2) 45°
- (3) 60°
- (4) 90°
- 53. The locked rotor current in a three phase start connected 15kW, 4-pole, 230V, 50Hz induction motor at rated condition is 50A. Neglecting losses and magnetising current, the approximate locked rotor line current dawn when the motor is connected to a 236V, 57Hz supply is:
 - (1) 58.5A
- (2) 45.0A
- (3) 42.7A
- (4) 55.6A

54.	The slip of an induction motor normally does not depend upon				
	(1) rotor speed		(2) synchronous speed		
	(3) shaft torque		(4) core loss co	emponent	
55.	A synchronous The armature re		zero power factor	(lagging) load at rated current.	
	(1) magnetisin		(2) demagnetis	ing	
	(3) cross-magn	netising	(4) ineffective		
56.	A single phase transmission line of j0.8 Ω is supplying a load of 40A at 200V and unity power factor. Then, the sending end power factor will be:				
	(1) 1	(2) 0.987	(3) 0	(4) 0.982	
57.	Two incoming lines with fault levels at their terminals equal to 100MVA and 150MVA terminate on a common bus in a substation. A 1MVA step down transformer having 10% reactance is connected to this bus. Then, the fault level on LV side of the transformer will be:				
	(1) 12.57	(2) 9.57	(3) 11.57	(4) 18.57	
58	parameters are	1		conductor, the changes in line	
		s and C decreases s and C not affected		c and C increases C are not affected	
59.	shortened at or		its characteristic in	nce of 300Ω and length $\lambda/2$ is appealance at the othe. The input	
	(1) 0Ω	(2) 200Ω	(3) 300Ω	(4) 150Ω	
мрн	/PHD/URS-EE-	2019/(Electrical Engg.)(SET-Y)/(C)	P. T. C	


- 60. In load flow analysis, the load connected to a bus is represented as:
 - (1) constant current drawn from the bus
 - (2) constant impedance connected at the bus
 - (3) voltage and frequency dependent source at the bus
 - (4) constant real and reactive power drawn from the bus
- 61. For a two port network shown below, the Z-matrix is given by:

$$(3) \begin{bmatrix} Z_1 & Z_2 \\ Z_2 & Z_1 + Z_2 \end{bmatrix}$$

$$(4) \begin{bmatrix} Z_1 & Z_1 \\ Z_1 & Z_2 + Z_2 \end{bmatrix}$$


- **62.** The Z-matrix of a network is given as $Z = \begin{bmatrix} 0.9 & 0.2 \\ 0.2 & 0.6 \end{bmatrix}$, then Y_{22} is given by :
 - (1) 1.2
- (2) 0.4
- (3) -0.4
- (4) 1.8
- 63. The resonant frequency for the given circuit below is:

- (1) 1 rad/s
- (2) 3 rad/s
- (3) 2 rad/sec
- (4) 5.1 rad/sec

C

64. The number of chords in the graph of the circuit shown below is:

- (1) 3
- (2) 4
- (3) 5
- (4) 6

65. The average power absorbed by an impedance of $Z = 30 - j70\Omega$ when a voltage of $V = 120 \angle 0^{\circ}$ is applied across it is:

- (1) 21.4W
- (2) 37.24W
- (3) 32.74W
- (4) 12.4W

66. The Q-factor of a coil with resonating frequency f_0 is given by:

 $(1) \frac{2\pi f_0 R}{L}$

(2) $\frac{2\pi f_0 R}{C}$

(3) $\frac{bandwidth}{f_0}$

(4) None of these

67. Which of the following statements holds for the divergence of electric and magnetic flux densities?

- (1) Both are zero
- (2) These are zero for static densities but non-zero for time varying densities.
- (3) It is zero for the electric flux density
- (4) It is zero for the magnetic flux density

68. The value of flux density at a point in space is $\vec{B} = 4x\hat{a}_x + 2ky\hat{a}_y + 8\hat{a}_z$ W/m². The value of constant k must be equal to:

- (1) -2
- (2) -0.5
- (3) +0.5
- (4) +2

MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(C)

69. Two electric charges +q and -2Q are placed at (0, 0) and (6, 0) in the x-y plane. The equation of the zero equipotential curve in the x-y plane is:

(1)
$$x = -2$$

(2)
$$y = 2$$

(3)
$$x^2 + y^2 = 2$$

(4)
$$(x+2)^2 + y^2 = 16$$

70. A 4-pole lap wound DC shunt generator has an armature winding consisting of 220 turns each of 0.004Ω resistance, then the armature resistance will be:

(1) 0.055Ω

(2) 0.0275Ω

(3) 0.110Ω

(4) 0.22Ω

71. A 200 km long three phase transmission line is transferring a power of 200MVA having line losses of 5MW. If the recieving end voltage is 110kV, the line has a resistance of:

(1) $10\Omega/ph$

(2) 1.5Ω/ph

(3) $1\Omega/ph$

(4) $2.5\Omega/ph$

72. The cost function of a 50MW generator is $F(P_1) = 225 + 53P_1 + .02P_1^2$ where P_1 is the generator loading in MW. For 100% loading the cost is:

(1) Rs. 55 per Mwh

(2) Rs. 55 per Mw

(3) Rs. 58.5 per Mwh

(4) Rs. 55.5 per Mwh

73. Two insulator discs of identifical capacitance value C make up of a string for a 22kV, 50 Hz single phase overhead line insulation system. If the pin to earth capacitance is also C, then the string efficiency is:

(1) 50%

(2) 75%

(3) 90%

(4) 86%

- 74. The surge impedance of a three phase 400kV transmissionline is 400Ω . Then the surge impedance loading is:
 - (1) 400MW
- (2) 1000MW
- (3) 1600MW
- (4) 800MW
- 75. A three phase generator rated at 110MVA, 11kV is connected through circuit beakers to a transformer. The generator has direct axis sub-transient reactance $X''_d = 19\%$, transient reactance $X'_d = 26\%$ and synchronous reactance 130%. The generator is operating at no load and rated voltage when a three phase short circuit fault occurs between the breakers and the transformer. The magnitude of initial symmetrical RMS current in the breakers will be:
 - (1) 4.44kA
- (2) 22.20kA
- (3) 30.39kA
- (4) 38.45kA
- 76. The bus admittance matrix of a three-bus three line system is:

$$Y = \begin{bmatrix} -13 & 10 & 5 \\ 10 & -18 & 10 \\ 5 & 10 & -13 \end{bmatrix}$$

if each transmission line between the two buses is represented by an equivalent π -network, the magnitude of the shunt susceptance of the line connecting bus 1 and 2 is:

- (1) 4
- (2) 2
- (3) 1
- (4) 0.
- 77. The angle δ in the swing equation of a synchronous generator is the :
 - (1) angle between stator voltage and currents
 - (2) angular displacement of the rotor with respect to the stator
 - (3) angular displacement of the stator mmf with respect to a synchronously rotating axis
 - (4) angular displacement of an axis fixed to the rotor with respect to a synchronous rotating axis

MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(C)

- 78. A single phase load is supplied by a single phase voltage source. If the current flowing from the load to the source is $10\angle 150^{\circ}$ A and if the voltage at the load terminals is $100\angle 60^{\circ}V$, then the:
 - (1) load absorbs real power and delivers reactive power
 - (2) load absorbs real power and absorbs reactive power
 - (3) load delivers real power and delivers reactive power
 - (4) load delivers real power and absorbs reactive power
- 79. A cylindrical rotor generator delivers 0.5pu power in the steady state to an infinite bus through a transmission line of reactance 0.5pu. The generator no load voltage is 1.5pu and the infinite bus voltage is 1pu. The inertia constant of the generator is 5MW-s/MVA and the generator reactance is 1pu. The critical clearing angle in degrees for a three phase dead short circuit fault at the generator terminal is:
 - (1) 53.5
- (2) 60.2
- (3) 70.8
- (4) 79.6
- 80. In a biased differential relay, the bias is defined as a ratio of:
 - (1) number of turns of restraining and operating coil
 - (2) operating coil current and restraining coil current
 - (3) fault current and operating coil currents
 - (4) fault current and restraining coil current
- 81. Invalid state of an S-R flip flop occurs when:
 - (1) S=1, R=0

(2) S=0, R=1

(3) S=0, R=0

- (4) S=1, R=1
- 82. A feature that distinguishes the J-K flip flop from the S-R flip flop is the:
 - (1) toggle condition

(2) preset input

(3) type of clock pulse

(4) clear input

- 83. In DC Choppers, the duty cycle D is usually varied at fixed frequency in order to:
 - (1) limit operating frequency
 - (2) have lower impact on filter design and switching losses
 - (3) reduce operating frequency
 - (4) have proper voltage at output
- 84. In order to obtain static voltage equalization in series-connected SCRs, connections are made of:
 - (1) one resistor across the string
 - (2) resistors of different value across each SCR
 - (3) resistors of the same value across each SCR
 - (4) one resistor in series with the string
- 85. A single phase full wave half controlled bridge converter feeds an inductive load. The two SCRs in the converter are connected to a common DC bus. The converter has to have a freewheeling diode:
 - (1) because the converter inherently does not provide way for freewheeling
 - (2) because the converter does not provide free wheeling for high values of triggering angles
 - (3) because the freewheeling action of the converter will cause shorting of AC supply
 - (4) because if a gate pulse to one of the SCRs is missed, it will subsequently cause a high load current in the other SCR
- 86. A voltage source inverter is used to control the speed of a three phase 50 Hz squirrel cage induction motor. Its slip for rated torque is 4%. The flux is maintained at rated value. If the stator resistance and rotational losses are neglected, then the frquency of the impressed voltage to obtain twice the rated torque at starting should be:
 - (1) 10 Hz
- (2) 5 Hz
- (3) 4 Hz
- (4) 2 Hz

- An SCR is considered to be a semi-controlled device because:
 - (1) it can be turned OFF but not ON with a gate pulse
 - (2) it conducts only during one half-cycle of an alternating current wave
 - (3) it can be turned ON but not OFF with a gate pulse
 - (4) it can be turned ON only during one half cycle of an alternating voltage wave
- 88. Circuit turn-OFF time of an SCR is defined as the time:
 - (1) taken by the SCR to turn OFF
 - (2) required for the SCR current to become zero
 - (3) for which the SCR is reverse biased by the commutation circuit
 - (4) for which the SCR is reverse biased to reduce its current below the holding current
- A half controlled single phase bridge rectifier is supplying an RL load. It is operated at a firing angle α and the load current is continuous. The fraction of cycle that the freewheeling diode conducts is:
 - $(1) \cdot \frac{1}{2}$

18

- $(2) \left(1 \frac{\alpha}{\pi}\right) \qquad (3) \frac{\alpha}{2\pi}$
- The typical ratio of the latching current to holding current in a 20A thyristor is:
 - (1) 5.0
- (2) 2.0
- (3) 1.0
- (4) 0.5
- The transfer function of a phase lead compensator is $\frac{s+a}{s+b}$ and that of phase lag compensator is $\frac{s+p}{s+a}$, then which of the following sets of conditions must be met?

(1) a > b and p < q

(2) a > b and p > q

(3) a < b and p < q

- (4) a < b and p > q
- The dynamics of a system are governed by $\ddot{y}(t) \ddot{x}(t) x(t-1) = 0$. Then the transfer function of the system is:

 - (1) $s^2 + se^{-s}$ (2) $1 + s^2e^{-s}$ (3) $1 + s^{-2}e^{-s}$ (4) $1 + s^{-2}e^{s}$

- A composite RC network has the transfer function $K(s) = \frac{1+21s+20s^2}{1+11s+10s^2}$, then this block can be used as a:
 - (1) phase lead compensator
- (2) phase lag compensator
- (3) lag-lead compensator
- (4) none of above
- The value of K and a, for which the system $G(s) = \frac{K(s+2)}{s^3 + s^2 + as + 1}$ will oscillate with 3 rad/sec frequency in unity feedback configuration, are respectively as:
 - (1) 2, 2
- (2) 4, 5
- (3) 3, 4
- (4) 2, 3
- The time taken by the output of a system $G(s) = \frac{1}{(s+1)}$ to settle around 95% of its final value is:
 - (1) 2 sec
- (2) 1.33 sec (3) 1.11 sec
- (4) 3 secondary
- The system with $G(s) = \frac{1}{s(\tau s + 1)}$ when connected in the unity feedback configuration produces error to the step inputs as $e(t) = Ke^{-4t} \sin(10t + \phi)$. The system time constant τ is then given by:
 - (1) 0.01
- (2) 0.03
- (3) 10
- (4) 4
- Given a unity feedback system with $G(s) = \frac{K(s-1)(s-2)}{s(s+1)}$, which of the following is true?
 - (1) the system will always be stable for all K
 - (2) the system will be stable for low gain K
 - (3) the system is stable for high gain K
 - (4) the system root locus never crosses jw axis

98. The state space equations of a system are as:

$$\ddot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u; y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

then the damping ratio and decay factor are:

- (1) .707, 2
- (2) 1.414, 1
- (3) 0.5, 1
- (4) 0.5, 0.5

99. The state space equations of a system are as:

$$\ddot{x} = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u; \ y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

then the position error constant K_p and velocity error constant K_p are respectively as:

- (1) 2, 0
- $(2) \infty, 0$
- $(3) \infty, 1$
- (4) None of these

100. The dynamics of a system are governed by following state equations:

$$\ddot{x} = \begin{bmatrix} 3 & 0 \\ -2 & 2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u; \ y = \begin{bmatrix} 1 & 1 \end{bmatrix} x$$

then this system is:

- (1) controllable, observable and unstable
- (2) not controllable, observable and stable
- (3) not controllable, not observable and unstable
- (4) not controllable, observable and unstable

Total No. of Printed Pages: 21

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU

M.Phil./Ph.D./URS-EE-2019

10020

SUBJECT: Electrical Engineering

	10	Sr. No
Time : 1¼ Hours Roll No. (in figures)	Max. Marks : 100 (in words)	Total Questions: 100
Name	Father's Name	
Mother's Name	Date of Examination_	
(Signature of the Candidate)	-	(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along with answer key of all the A, B, C & D code will be got uploaded on the University website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E.Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered.
- 5. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

- 1. Invalid state of an S-R flip flop occurs when:
 - (1) S=1, R=0
- (2) S=0, R=1
- (3) S=0, R=0
- (4) S=1, R=1
- 2. A feature that distinguishes the J-K flip flop from the S-R flip flop is the:
 - (1) toggle condition

(2) preset input

(3) type of clock pulse

- (4) clear input
- 3. In DC Choppers, the duty cycle D is usually varied at fixed frequency in order to:
 - (1) limit operating frequency
 - (2) have lower impact on filter design and switching losses
 - (3) reduce operating frequency
 - (4) have proper voltage at output
- 4. In order to obtain static voltage equalization in series-connected SCRs, connections are made of:
 - (1) one resistor across the string
 - (2) resistors of different value across each SCR
 - (3) resistors of the same value across each SCR
 - (4) one resistor in series with the string
- 5. A single phase full wave half controlled bridge converter feeds an inductive load. The two SCRs in the converter are connected to a common DC bus. The converter has to have a freewheeling diode:
 - (1) because the converter inherently does not provide way for freewheeling
 - (2) because the converter does not provide free wheeling for high values of triggering angles
 - (3) because the freewheeling action of the converter will cause shorting of AC supply
 - (4) because if a gate pulse to one of the SCRs is missed, it will subsequently cause a high load current in the other SCR

MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(D)

_	A voltage source inverter is used to control the speed of a three phase 50 Hz squirren
ь.	A voltage source inverter is used to contact and a maintained at rated
	cage induction motor. Its slip for rated torque is 4%. The flux is maintained at rated
	value. If the stator resistance and rotational losses are neglected, then the frquency of
	value. If the stator resistance and rotational losses are neglected, then are
	the impressed voltage to obtain twice the rated torque at starting should be:

- (1) 10 Hz
- (2) 5 Hz
- (3) 4 Hz
- (4) 2 Hz

7. An SCR is considered to be a semi-controlled device because:

- (1) it can be turned OFF but not ON with a gate pulse
- (2) it conducts only during one half-cycle of an alternating current wave
- (3) it can be turned ON but not OFF with a gate pulse
- (4) it can be turned ON only during one half cycle of an alternating voltage wave

Circuit turn-OFF time of an SCR is defined as the time:

- (1) taken by the SCR to turn OFF
- (2) required for the SCR current to become zero
- (3) for which the SCR is reverse biased by the commutation circuit
- (4) for which the SCR is reverse biased to reduce its current below the holding current
- A half controlled single phase bridge rectifier is supplying an RL load. It is operated at a firing angle α and the load current is continuous. The fraction of cycle that the freewheeling diode conducts is:
 - $(1) \frac{1}{2}$
- (2) $\left(1-\frac{\alpha}{\pi}\right)$ (3) $\frac{\alpha}{2\pi}$ (4) $\frac{\alpha}{\pi}$

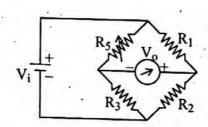
10. The typical ratio of the latching current to holding current in a 20A thyristor is :

- (1) 5.0
- (2) 2.0
- (3) 1.0
- (4) 0.5
- For a motor to deliver a torque of 2.5Nm at 1400rpm, the armature voltage to be applied is:
 - (1) 125.5V
- (2) 193.3V
- (3) 200V
- (4) 241.7V

12.	The direct axis and quadrature axis reactances of a salient pole alternator are 1.2pu and				
	1.0pu, respective	ely. The armature	resistance is neglig	ible. If this alternate	or is delivering
	rated kVA at un	ity power factor ar	nd at rated voltage,	then its power angle	is:
	(1) 30°	(2) 45°	(3) 60°	(4) 90°	Ī
13.	The locked roto	r current in a thre	ee phase start conn	ected 15kW, 4-pole	, 230V, 50Hz
	induction motor	at rated condition	is 50A. Neglectin	g losses and magne	tising current,
	the approximate	locked rotor line	current dawn when	the motor is connec	ted to a 236V,
	57Hz supply is:				
	(1) 58.5A	(2) 45.0A	(3) 42.7A	(4) 55.6A	
14.	The slip of an in-	duction motor nor	mally does not depe	end upon	
	(1) rotor speed		(2) synchron	ious speed	
	(3) shaft torque	,	(4) core loss	component	
15.	A synchronous g	generator is feeding	g a zero power facto	or (lagging) load at 1	rated current.
	The armature rea		7		
	(1) magnetising		(2) demagne	tising	
	(3) cross-magne	tising	(4) ineffective	/e	
16.	A single phase tr	ansmission line of	j0.8Ω is supplying	a load of 40A at 200	V and unity
			l power factor will l		
	(1) 1	(2) 0.987	(3) 0	(4) 0.982	
17.	Two incoming lin	nes with fault level	s at their terminals	equal to 100MVA ar	nd 150MVA
	terminate on a co	ommon bus in a s	ubstation. A 1MVA	step down transfor	rmer having
	10% reactance is transformer will be	s connected to the	is bus. Then, the	fault level on LV	side of the
	(1) 12.57	(2) 9.57	(3) 11.57	(4) 18.57	L
PH/I	PHD/URS-EE-201	19/(Electrical Eng		(1) 10.57	рто
			, , ,		P. T. O.

22. Time response of an indicating instrument is given by:

(1) controlling mechanism


(2) bearing mechanism

(3) deflecting mechanism

(4) damping mechanism

23.	A shunt resistance of 25Ω is necessary to extend range of an ammeter from $100\mu A$ to							
	500μA. The val	ue of internal resistar	nce of the ammeter is	:				
	(1) 25Ω	(2) 50Ω	(3) 100Ω	(4) 1000Ω	- Ř.			
24.	In a PMMC typ	e instrument, the ma	gnetic field produced	by the eddy currents:				
	(1) doesn't affe	(1) doesn't affect the motion of the coil						
	(2) acts in the	same direction of the	motion of the coil					
(C)			the motion of the coil					
	(4) none of abo							
25.	In a two wattmeter method of measuring three phase power, power factor is 0.5, one wattmeter reads W then the other meter will read:							
	$(1) \sqrt{3} W$	(2) W/2	(3) 2W	(4) 0W				
26.		uit rated 5500kW,	mer and current tran					
	(1) 10, 10	(2) 50, 50	(3) 200, 200	(4) None of thes	е			
27.	The effect of stray magnetic fields on the actuating torque of a portable instrument is maximum when the operating field of the instrument and the stray field are:							
	(1) perpendicu	ılar	(2) parallel					
	(3) inclined at	60°	(4) inclined at 3	0°				
28.	A 500A/5A, 50Hz transformer has a bar primary. The secondary burden is a pure resistance of 1Ω and it draws a current of 5A. If the magnetic core requires 250AT for magnetisation, the percentage ratio error is:							
	(1) 10.56	(2) -10.55	(3) 11.80	(4) -11.80				
MEDIT								
WIPH	/FAD/UKS-EE-	2019/(Electrical Eng	gg.)(SE1-1)/(D)		P. T. C			

A strain guage forms one arm of the bridge shown in the figure below, and has a nominal resistance without any load as $R_s = 300\Omega$. Other bridge resistances are $R_1 = R_2 = R_3 = 300\Omega$. The maximum permissible current through the strain guage is 20mA. During certain measurement when the bridge is excited by maximum permissible voltage an the strain guage resistance is increased by 1% over the nominal value, the output voltage Vo in mV is:

- (1) 56.02
- (2) 40.83
- (3) 29.85
- (4) 10.02
- In CE configuration, the input V-I characteristics are drawn by taking:
 - (1) V_{CE} as I_C for constant value of I_E
 - (2) V_{BE} vs I_E for constant value of V_{CE}
 - (3) V_{BE} vs I_B for constant value of I_C
 - (4) V_{BE} vs I_B for constant value of V_{CE}
- Full load voltage regulation of a power transformer is zero when the power factor of the load is:
 - (1) unity and leading

(2) zero and leading

(3) zero and lagging

- (4) unity and lagging
- In an autotransformer of voltage ratio V_1/V_2 and $V_1 > V_2$, the fraction of power transferred inductively is:
 - $(1) \ \frac{V_1}{V_1 + V_2} \qquad (2) \ \frac{V_2}{V_1}$
- (3) $\frac{V_1 V_2}{V_1 + V_2}$ (4) $\frac{V_1 V_2}{V_1}$

33.	A series motor drawing an armature current of 1_a is operating under saturated magnetic
	conditions. The torque developed in the motor is proportional to:

- (1) $\frac{I}{I_a}$
- $(2) \frac{I}{I_a^2}$
- (3) I_a^2
- (4) I_a

34. Which of the following are the features of a shaded pole motor

- a. Salient pole stator
- b. Uniform air-gap
- c. Two stator windings one of which is a short circuited ring
- d. Squirrel cage rotor

Select the correct answer using following

Code:

(1) a and d

(2) b and d

(3) a, c and d

- (4) a, b and d
- 35. A synchronous motor is running from an infinite bus of voltage V_t in steady state at about 50% of its rated load with a power angle δ_1 between V_t and E_f . The load is suddenly decreased to 25%. E_f attains its new steady state power angle δ_2 with V_t by initially:
 - (1) falling behind and making a complete rotation
 - (2) advancing and making a complete rotation
 - (3) falling behind followed by oscillation about δ_2
 - (4) advancing followed by oscillation about δ_2

36. The rotor output of a three phase induction motor is 15kW and the corresponding slip is 4%. The rotor copper loss will be:

- (1) 600W
- (2) 625W
- (3) 650W
- (4) 700W

MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(D)

37.	A single phase transformer has a rating of 15kVA, 600/120V. It is reconnected as an						
	autotransformer to supply 720V from a 600V primary source.				. The maximum load it		
	can supply is:						
	(1) 90kVA	÷	(2) 18 kVA	4			

(3) 15 kVA

(4) 12kVA

38. A 200V DC shunt motor delivers an output of 17kW with an input of 20kW. The field winding resistance is 50Ω and armature resistance is 0.04Ω. Maximum efficiency will be obtained when the total armature copper losses are equal to:

(1) 2632W

(2) 3000W

(3) 3680W

(4) 5232W

39. A three phase alternator is connected to a delta-delta transformer. The hysteresis and eddy current loasses of the transformer are 300W and 400W respectively. If the speed of the alternator is reduced by 10% then the hysteresis and eddy current losses of the transformer respectively will be:

(1) 218W and 262.44W

(2) 243W and 324W

(3) 243W and 360W

(4) 270W and 400W

40. A 220V DC shunt motor is operating at a speed of 1440rpm. The armature resistance is 1.0Ω and armature current is 10A. If the excitation of the machine is reduced by 10%, the extra resistance to be put in the armature circuit to maintain the same speed and torque will be:

(1) 1.79Ω

(2) 2.1Ω

(3) 3Ω

(4) 18.9Ω

- 41. The transfer function of a phase lead compensator is $\frac{s+a}{s+b}$ and that of phase lag compensator is $\frac{s+p}{s+q}$, then which of the following sets of conditions must be met?
 - (1) a > b and p < q

(2) a > b and p > q

(3) a < b and p < q

- (4) a < b and p > q
- **42.** The dynamics of a system are governed by $\ddot{y}(t) \ddot{x}(t) x(t-1) = 0$. Then the transfer function of the system is:
 - (1) $s^2 + se^{-s}$

(2) $1 + s^2 e^{-s}$

(3) $1 + s^{-2}e^{-s}$

- (4) $1 + s^{-2}e^{s}$
- **43.** A composite RC network has the transfer function $K(s) = \frac{1+21s+20s^2}{1+11s+10s^2}$, then this block can be used as a:
 - (1) phase lead compensator
- (2) phase lag compensator
- (3) lag-lead compensator
- (4) none of above
- 44. The value of K and a, for which the system $G(s) = \frac{K(s+2)}{s^3 + s^2 + as + 1}$ will oscillate with 3 rad/sec frequency in unity feedback configuration, are respectively as:
 - (1) 2, 2
- (2) 4, 5
- (3) 3, 4
- (4) 2, 3
- **45.** The time taken by the output of a system $G(s) = \frac{1}{(s+1)}$ to settle around 95% of its final value is :
 - (1) 2 sec

(2) 1.33 sec

(3) 1.11 sec

(4) 3 secondary

MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(D)

- 46. The system with $G(s) = \frac{1}{s(\tau s + 1)}$ when connected in the unity feedback configuration produces error to the step inputs as $e(t) = Ke^{-4t} \sin(10t + \phi)$. The system time constant τ is then given by:
 - (1) 0.01
- (2) 0.03
- (3) 10
- (4) 4
- 47. Given a unity feedback system with $G(s) = \frac{K(s-1)(s-2)}{s(s+1)}$, which of the following is true?
 - (1) the system will always be stable for all K
 - (2) the system will be stable for low gain K
 - (3) the system is stable for high gain K
 - (4) the system root locus never crosses jw axis
- 48. The state space equations of a system are as:

$$\ddot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u; \ y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

then the damping ratio and decay factor are:

(1) .707, 2

(2) 1.414, 1

(3) 0.5, 1

- (4) 0.5, 0.5
- 49. The state space equations of a system are as:

$$\ddot{x} = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u; \ y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

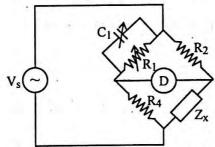
then the position error constant K_p and velocity error constant K_v are respectively as:

(1) 2, 0

 $(2) \infty, 0$

 $(3) \infty, 1$

(4) None of these


50. The dynamics of a system are governed by following state equations:

$$\ddot{x} = \begin{bmatrix} 3 & 0 \\ -2 & 2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u; \ y = \begin{bmatrix} 1 & 1 \end{bmatrix} x$$

then this system is:

- (1) controllable, observable and unstable
- (2) not controllable, observable and stable
- (3) not controllable, not observable and unstable
- (4) not controllable, observable and unstable

51. The bridge circuit shown in figure below is used for the measurement of an unknown element Z_x . The bridge circuit is best suited when Z_x is as:

- (1) low resistance (2) high resistance (3) low Q inductor (4) lossy capacitor
- 52. A silicon diode indicates forward currents of 2mA and 10mA when diode voltages are 0.6V and 0.7V respectively. The operating temperature of the diode junction is:
 - (1) 180K
- (2) 360K
- (3) 480K
- (4) 320K
- 53. The current gain of a bipolar transistor drops at high frequencies because of:
 - (1) transistor internal capacitances
- (2) high current effects in the base
- (3) parasitic inductive elements
- (4) the Early effects
- 54. A diode has a leakage current of 10μA at certain temperature. Find its value when temperature is increased by 25°C:
 - (1) 56.00 µA
- (2) 56.56 µA
- (3) 59.56 μA
- (4) None of these

MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(D)

55.	A transistor has α	*							
	(1) 50	(2) 49	(3) 7	0	(4) None of these	[4			
56.	A JFET has a valu	ne of $g_{m0} = 4000 \mu$	S. Determ	nine the valu	ue of g_m at $V_{GS} = -3V$. G	liven			
	that $V_{GS(off)} = -8V$								
	(1) 250 μS	(2) 2500 μS	(3) 2	5 μS	(4) None of these				
57.	A multiplexer is a	:				1			
	(1) one input man	y output device	(2) one input and one output device						
	(3) many input ma	any output device	(4) many input to one output device						
58.	A J-K flip flop is r	nade to toggle via:	, ,		8				
ą.	(1) J=0, K=0	(2) $J=1, K=0$	(3) J=	=0, K=1	(4) J=1, K=1				
59.	Multiplexers are used in :								
	(1) data generation	(2) serial to parallel conversion							
	(3) data selection		(4) N	lone of these	e .	90			
60.	Which one of the f	following is a unive	rsal gate	?					
	(1) AND	(2) OR	(3) E	x-NOR	(4) NAND				
61.	A 200 km long t	hree phase transm	ission lin	e is transfe	erring a power of 200N	ΛVA			
	having line losses resistance of:	of 5MW. If the	recieving	g end volta	ge is 110kV, the line h	ias a			
	(1) 10Ω/ph	(2) $1.5\Omega/ph$	(3) 1	Ω/ph	(4) $2.5\Omega/ph$				
62.	The cost function of generator loading i				$53P_1 + .02P_1^2$ where P_1 is	s the			
	(1) Rs. 55 per Mw		724 5	s. 55 per M	w				
	(3) Rs. 58.5 per M			s. 55.5 per					
рн/	PHD/URS-EE-2019)/(Electrical Engo)(SET-V)/(D)					
				, (-)					

63.	Two insulator discs of identifical capacitance value C make up of a string for a 22kV,
	50 Hz single phase overhead line insulation system. If the pin to earth capacitance is
	also C, then the string efficiency is:

- (1) 50%
- (2) 75%
- (3) 90%
- (4) 86%

64. The surge impedance of a three phase 400kV transmissionline is 400Ω . Then the surge impedance loading is:

- (1) 400MW
- (2) 1000MW
- (3) 1600MW
- (4) 800MW

65. A three phase generator rated at 110MVA, 11kV is connected through circuit beakers to a transformer. The generator has direct axis sub-transient reactance $X''_d = 19\%$, transient reactance $X''_d = 26\%$ and synchronous reactance 130%. The generator is operating at no load and rated voltage when a three phase short circuit fault occurs between the breakers and the transformer. The magnitude of initial symmetrical RMS current in the breakers will be:

- (1) 4.44kA
- (2) 22.20kA
- (3) 30.39kA
- (4) 38.45kA

66. The bus admittance matrix of a three-bus three line system is:

$$Y = \begin{bmatrix} -13 & 10 & 5 \\ 10 & -18 & 10 \\ 5 & 10 & -13 \end{bmatrix}$$

if each transmission line between the two buses is represented by an equivalent π -network, the magnitude of the shunt susceptance of the line connecting bus 1 and 2 is:

- (1) 4
- (2) 2
- (3) 1
- (4) 0

67. The angle δ in the swing equation of a synchronous generator is the :

- (1) angle between stator voltage and currents
- (2) angular displacement of the rotor with respect to the stator
- (3) angular displacement of the stator mmf with respect to a synchronously rotating axis
- (4) angular displacement of an axis fixed to the rotor with respect to a synchronous rotating axis

MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(D)

- 68. A single phase load is supplied by a single phase voltage source. If the current flowing from the load to the source is $10\angle 150^\circ$ A and if the voltage at the load terminals is $100\angle 60^\circ V$, then the:
 - (1) load absorbs real power and delivers reactive power
 - (2) load absorbs real power and absorbs reactive power
 - (3) load delivers real power and delivers reactive power
 - (4) load delivers real power and absorbs reactive power
- 69. A cylindrical rotor generator delivers 0.5pu power in the steady state to an infinite bus through a transmission line of reactance 0.5pu. The generator no load voltage is 1.5pu and the infinite bus voltage is 1pu. The inertia constant of the generator is 5MW-s/MVA and the generator reactance is 1pu. The critical clearing angle in degrees for a three phase dead short circuit fault at the generator terminal is:
 - (1) 53.5
- (2) 60.2
- (3) 70.8
- (4) 79.6
- 70. In a biased differential relay, the bias is defined as a ratio of:
 - (1) number of turns of restraining and operating coil
 - (2) operating coil current and restraining coil current
 - (3) fault current and operating coil currents
 - (4) fault current and restraining coil current
- 71. An electric motor developing a starting torque of 15Nm starts with a load torque of 7Nm on its shaft. If the acceleration at start is 2 rad/s², then moment of inertia of the systems must be (neglecting viscous and Coulomb friction)
 - (1) 0.25kgm²

(2) 0.25Nm²

(3) 4 kgm²

(4) 4Nm²

72. The ABCD parameters of a three phase overhead transmission line are $A = D = 0.9 \angle 0^{\circ}$, $B = 200 \angle 90^{\circ}\Omega$ and $C = 0.95 \times 10^{-3} \angle 90^{\circ}$. At no load condition, a shunt inductive reactor is connected at the receiving end of the line to limit the receiving end voltage to be equal to the sending end voltage. The ohmic value of the reactor is:

(1) $\infty \Omega$

(2) 2000Ω

(3) 105.26Ω

(4) 1052.5Ω

73. A round rotor generator with internal voltage $E_1 = 2.0pu$ and X = 1.1pu is connected to a round rotor synchronous motor with internal voltage $E_2 = 1.3pu$ and X = 1.2pu. The reactance of the line connecting the generator to the motor is 0.5pu. When the generator supplies 0.5pu power, the rotor angle difference between the machines will be:

(1) 57.42°

(2) 1°

(3) 32.58°

(4) 122.58°

74. If we make the system insensitive to forward path gain G(s) using negative feedback configuration, it becomes:

- (1) slow and stable
- (2) more sensitive to feedback path gain variations
- (3) stable as well as insensitive to variation in feedback path gains
- (4) fast at the cost of stability

75. Which of the following cannot be achieved using open loop control systems:

- (1) tracking avarying control command
- (2) rejecting some known disturbances
- (3) regulation around a set point
- (4) sensitivity reduction with respect to forward path gain

MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(D)

(1) 1 (2) 2 (3) $2\sqrt{2}$ (4) no value exists

78. An open loop transfer function has one pole and one zero in the right half of s-plane, then if the closed loop system is stable, the nyquist plot should encircle - 1 + j0 point

- (1) once in the anticlockwise direction
- (2) once in the clockwise direction
- (3) should not encircle
- (4) none of these

79. The Asymptotes in the root locus plot of unity feedback configuration of $G(s) = \frac{1}{s(s+1)(s+2)}$ intersects with the real axis at:

(1) -1.25 (2) -1.5 (3) -1 (4) -1.15

- **80.** Bode gain plots alone can be used to find the transfer function of a linear time invariant system when:
 - (1) Not possible alone with bode gain plots
 - (2) system is stable and observable
 - (3) system is causal and controllable
 - (4) system is non-minimum phase

- A fair coin is tossed three times in succession. If the first toss produces a head, then the probability of getting exactly two heads in three tosses is:
 - (1) 1/8
- (2) 1/2
- (3) 3/8
- (4) 3/4
- 82. Let the probability density function of a random variable X be given as $fx(x) = \frac{3}{2}e^{-3x}u(x) + ae^{4x}u(-x)$ where u(x) is the unit step function. Then the value of a and $Prob\{X \le 0\}$, respectively are:
 - (1) 2, 1/2
- (2) 4, 1/2
- (3) 2, 1/4 (4) 4, 1/4
- 83. Let $A = \begin{bmatrix} -3 & 2 \\ -1 & 0 \end{bmatrix}$, and I is the identity matrix, then A⁹ is given by :
 - $(1)^{\circ} 511A + 510I$
- (2) 309A + 104I (3) 154A + 155I (4) e^{9A}

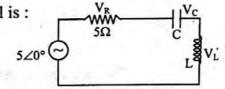
- The equations $\begin{bmatrix} 2 & -2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ has
 - (1) no solution

- (2) only one solution $x_1 = 0$, $x_2 = 0$
- (3) non zero unique solution
- (4) multiple solutions
- The Laplace transform of the function $f(t) = e^{2t} \sin(5t) u(t)$ is:
 - (1) $\frac{5}{s^2 4s + 29}$ (2) $\frac{5}{s^2 + 5}$ (3) $\frac{s 2}{s^2 + 4s + 29}$ (4) $\frac{5}{s + 5}$

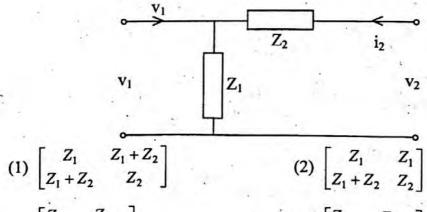
- Consider a signed defined as $x(t) = \begin{cases} e^{j10t} & |t| \le 1 \\ 0 & |t| > 1 \end{cases}$.

Its Fourier transform is given as:

(1) $\frac{2\sin(w-10)}{w-10}$

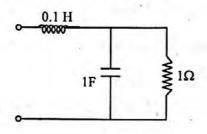

(2) $2e^{j10} \frac{\sin(w-10)}{w-10}$

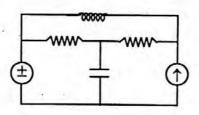
(3) $\frac{2\sin(w-10)}{w-10}$


(4) $e^{j10w} \frac{\sin(w-10)}{w-10}$

- 87. In a two port reciprocal network, the output open circuit voltage by the input current is equal to:
 - (1) h_{12}
- (2) Z_{12}
- $(3) Y_{11}$
- (4) B
- 88. A series RLC circuit consists of L=0.5 H, $C=50\mu F$ and $R=40\Omega$. When excited with 220V AC rms and 50Hz frequency source, the voltage across the capacitor is :
 - (1) 140V
- (2) 139.6V
- (3) 138.02V
- (4) 142V
- 89. The Y-parameter of the following network is $\begin{bmatrix} 0 & -1/2 \\ 1/2 & 1 \end{bmatrix}$, then the network is:
 - (1) non-reciprocal and active
- (2) non-reciprocal and passive
- (3) reciprocal and active

- (4) reciprocal and passive
- 90. In the circuit shown below, the magnitudes of V_L and V_C are twice that of V_R . The inductance of the coil is:


- (1) 2.14mH
- (2) 5.30mH
- (3) 31.8mH
- (4) 1.32mH
- 91. For a two port network shown below, the Z-matrix is given by:


 $(3)\begin{bmatrix} Z_1 & Z_2 \\ Z_2 & Z_1 + Z_2 \end{bmatrix}$

 $(4) \begin{bmatrix} Z_1 & Z_1 \\ Z_1 & Z_2 + Z_2 \end{bmatrix}$

- 92. The Z-matrix of a network is given as $Z = \begin{bmatrix} 0.9 & 0.2 \\ 0.2 & 0.6 \end{bmatrix}$, then Y_{22} is given by :
 - (1) 1.2
- (2) 0.4
- (3) -0.4
- (4) 1.8
- 93. The resonant frequency for the given circuit below is:

- (1) 1 rad/s
- (2) 3 rad/s
- (3) 2 rad/sec
- (4) 5.1 rad/sec
- 94. The number of chords in the graph of the circuit shown below is:

- (1) 3
- (2) 4
- (3) 5
- (4) 6
- 95. The average power absorbed by an impedance of $Z = 30 j70\Omega$ when a voltage of $V = 120 \angle 0^{\circ}$ is applied across it is:
 - (1) 21.4W
- (2) 37.24W
- (3) 32.74W
- (4) 12.4W
- 96. The Q-factor of a coil with resonating frequency f_0 is given by:
 - $(1) \ \frac{2\pi f_0 R}{L}$

 $(2) \frac{2\pi f_0 R}{C}$

(3) $\frac{bandwidth}{f_0}$

(4) None of these

MPH/PHD/URS-EE-2019/(Electrical Engg.)(SET-Y)/(D)

- 97. Which of the following statements holds for the divergence of electric and magnetic flux densities?
 - (1) Both are zero
 - (2) These are zero for static densities but non-zero for time varying densities.
 - (3) It is zero for the electric flux density
 - (4) It is zero for the magnetic flux density
- 98. The value of flux density at a point in space is $\vec{B} = 4x\hat{a}_x + 2ky\hat{a}_y + 8\hat{a}_z$ W/m². The value of constant k must be equal to:
 - (1) -2
- (2) -0.5 (3) +0.5
- (4) +2
- Two electric charges +q and -2Q are placed at (0, 0) and (6, 0) in the x-y plane. The equation of the zero equipotential curve in the x-y plane is:
 - (1) x = -2

(2) y = 2

(3) $x^2 + y^2 = 2$

- (4) $(x+2)^2 + y^2 = 16$
- 100. A 4-pole lap wound DC shunt generator has an armature winding consisting of 220 turns each of 0.004Ω resistance, then the armature resistance will be :
 - (1) 0.055Ω

(2) 0.0275Ω

(3) 0.110Ω

(4) 0.22Ω

				2/11	nc /Flocts	rical F	ngg.) 2019	9		
	Answer Key of Ph.D/URS (Electrical Engg.) 2019									
S	r. No	Set A		Set B		361.0	3		1	
	1		4		4		3		2	
	2		3		3		4		4	
	3		1		1	-	2		1	
	4		3		1	_	3		2	
	5		2		2	-	2		1	
	6		4		2	-	1		1	
	7		3	-	1	\vdash	3		2	1
	8		4	-	4	-	1		3	
	9		1	├	4	+-	3 .		2	1
-	10		2		2	+-	2		1	
	11		1	-		+-	4		4]
	12		4	-	3	+-	2		3	_
	13		3			+-	3	4	1	
	14		3	-	2	+	1	1	2	_
	15		2	-	4		3		4	
	16		1	+	1	+	4	\top	2	4
	17		3		4		2	7	4	_
	18		_1		3	+	· 1		3	_
	19		2		4	+	3		. 1	_
	20		2	+	-4	-	3		2	
	21		3	\dashv	2	+	4	7	3	
	22_		3	\dashv	4	\dashv	1		1	
	23	\dashv	4		 1	+	4		2	
	24		2			-+	3		4	
Γ	25		3	\dashv	$\frac{2}{1}$	+	2		1	
Γ	26		2	+	1	一十	1		1	
Γ	27			\dashv	2	-+	3		4	
Γ	28		3	-	3	\dashv	1		3	
Γ	29_		1	\dashv	2		3		4	
	30		3		4	\dashv	2		3	
ſ	31		1	-+	3	-+	3		3	
. [32		4	-	$\frac{3}{1}$	-	1		4	
- 1	33		3		3		2		2	
	34		1	-+	2	-	4		3_	
	35		2		4		1		2	
	36		4		3		1		1	
	37		2		4		4		3	
	38		4	_	1		3		1	
	39		3		2		4		3	
	40		1		2		4		2	
	41		4		4		3		3	
	42		3		2		1	-	4	
	43		1		3		3		1	
	4		1		1		2	_	2	
	4		2		-		4		1	
	4		3			1	3		4	
	4	7	2			2	4		3	
	4	8	1			1		<u> </u>	2	
	4	9	4			3		2	2	
	5	0	4	1						

20/11/19

1/2/11/9

			ectrical Engg.) 20	
Sr. No	Set A	Set B	Set C	Set D
51	2	2	1	3
52	4	3	4	4
53	2	4	3	1
54	3	1	1	4
55	1	2	2	3
56	3	1	4	2
57	4	4	2	1
58	2	3	4	3
59	1	2	3	1
60	3	1	1	3
61	2	3	1	4
62	3	3	4	3
63	4	4	3	1
64	1	2	3	1
65	2	3	2	2
66	1	2	1	3
67	4	1	3	2
68	3	3	1	1
69	2	1	2	4
70	1	3	2	4
		1		
71	2		4	2
72	3	. 4	3	4
73	1	3	1	2
74	2	3	1	3
75	4	2	2	1
76	1	1	3	3
77	1	3	2	4
78	4	1	1	2
79	3	2	4	1
80	4	2	4	3
81	3	3	1	4
82	4	4	2	3
83	1	1	4	1
84	4	4	1	3
85	3	3	2	2
86	2	2	1	4
87	1	1	1	3
88	3	3	2	4
89	1	1	3	1
90	3	3	2	2
91	1	1	2	1
92	2	4	3	4
93	4	3	4	3
94	1	1	1	3
95	2	2	2	2
96	1	4	1	1
97	1	2	4	3
	2	4	3	
98		3		1
99	3		2	2
100	2	1	1	2

Str 20/11/19

10/90/11/19